
Cover page

i

About the Tutorial

Android is an open-source, Linux-based operating system for mobile devices

such as smartphones and tablet computers. Android was developed by the Open

Handset Alliance, led by Google, and other companies.

This tutorial will teach you the basic Android programming and will also take you

through some advance concepts related to Android application development.

Audience

This tutorial has been prepared for beginners to help them understand basic

Android programming. After completing this tutorial, you will find yourself at a

moderate level of expertise in Android programming from where you can take

yourself to next levels.

Prerequisites

Android programming is based on Java programming language. If you have a

basic understanding of Java programming, then it will be fun to learn Android

application development.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ··· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ·· i

Table of Contents ·· ii

1. OVERVIEW ·· 1

What is Android? ·· 1

Features of Android ·· 1

Android Applications ·· 2

2. ENVIORNMENT SETUP ·· 4

Step 1 - Setup Java Development Kit (JDK) ·· 4

Step 2 - Setup Android SDK ··· 5

Step 3 - Setup Eclipse IDE ·· 6

Step 4 - Setup Android Development Tools (ADT) Plugin ·· 7

Step 5 - Create Android Virtual Device ·· 9

3. ARCHITECTURE ·· 11

Linux kernel ·· 11

Libraries ·· 11

Android Runtime ·· 12

Application Framework ··· 12

Applications ·· 12

4. APPLICATIONS COMPONENT ··· 13

Activities ··· 13

Services ··· 14

iii

Broadcast Receivers ·· 14

Content Providers ··· 14

Additional Components ·· 15

5. HELLO WORLD EXAMPLE ··· 16

Create Android Application ··· 16

Anatomy of Android Application··· 17

The Main Activity File ··· 19

The Manifest File ·· 20

The Strings File ·· 21

The R File ·· 22

The Layout File ·· 23

Running the Application ··· 24

6. ORGANIZING & ACCESSING THE RESOURCES ·· 26

Organize Resources ··· 26

Alternative Resources ··· 28

Accessing Resources ··· 29

Accessing Resources in Code ··· 29

Accessing Resources in XML ·· 31

7. ACTIVITIES ··· 32

8. SERVICES ··· 38

9. BROADCAST RECEIVERS··· 49

Creating the Broadcast Receiver ··· 49

Registering Broadcast Receiver ··· 49

Broadcasting Custom Intents ·· 51

10. CONTENT PROVIDERS ··· 58

iv

Content URIs ··· 58

Create Content Provider ··· 59

11. FRAGMENTS ·· 74

Fragment Life Cycle ··· 75

How to use Fragments? ·· 76

12. INTENTS & FILTERS ·· 85

Intent Objects ··· 86

Action ··· 86

Data ·· 86

Category ··· 87

Extras ·· 87

Flags ·· 87

Component Name ··· 87

Types of Intents ·· 87

Explicit Intents ·· 88

Implicit Intents ·· 88

Intent Filters ··· 93

13. UI LAYOUTS ··· 104

Android Layout Types ··· 105

Layout Attributes ·· 106

View Identification ·· 108

14. UI CONTROLS ·· 110

Android UI Controls ·· 110

Create UI Controls ··· 112

15. EVENT HANDLING ··· 113

v

Event Listeners & Event Handlers ··· 113

Event Listeners Registration: ··· 114

Event Handling Examples ·· 114
Event Listeners Registration Using an Anonymous Inner Class ··· 114

Registration Using the Activity Implements Listener Interface ·· 119

Registration Using Layout file activity_main.xml ·· 122

Exercise: ·· 126

17. STYLES & THEMES ··· 127

Defining Styles ·· 127

Using Styles ··· 128

Style Inheritance ··· 129

Android Themes ·· 130

Default Styles & Themes ··· 130

18. CUSTOM COMPONENTS ··· 132

Creating a Simple Custom Component ·· 132

Instantiate using code inside activity class ·· 133

Instantiate using Layout XML file ·· 134

Custom Component with Custom Attributes ·· 135

Step 1 ·· 135

Step 2 ·· 135

Step 3 ·· 136

19. DRAG & DROP ··· 138

The Drag/Drop Process ··· 138

The DragEvent Class ·· 139
Constants ··· 139
Methods ··· 140

Listening for Drag Event ·· 140

Starting a Drag Event ·· 141

vi

20. NOTIFICATIONS ··· 148

Create and Send Notifications ··· 149
Step 1 - Create Notification Builder ··· 149
Step 2 - Setting Notification Properties ··· 149
Step 3 - Attach Actions ··· 149
Step 4 - Issue the notification ·· 150

The NotificationCompat.Builder Class ··· 150

Big View Notification ·· 162

21. LOCATION-BASED SERVICES ·· 165

The Location Object ·· 165

Get the Current Location ··· 167

Get the Updated Location ··· 168

Location Quality of Service ··· 168

Displaying a Location Address ··· 169

Install the Google Play Services SDK·· 170

Create Android Application ··· 170

22. SENDING EMAIL ·· 182

Intent Object - Action to send Email ··· 182

Intent Object - Data/Type to send Email ··· 182

Intent Object - Extra to send Email·· 182

23. SENDING SMS ··· 190

Using SmsManager to send SMS ··· 190

Using Built-in Intent to send SMS ·· 197

Intent Object - Action to send SMS ··· 197

Intent Object - Data/Type to send SMS ··· 198

Intent Object - Extra to send SMS ··· 198

24. PHONE CALLS ·· 205

Intent Object - Action to make Phone Call ·· 205

vii

Intent Object - Data/Type to make Phone Call ·· 205

25. PUBLISHING ANDROID APPLICATION ·· 212

Export Android Application ··· 213

Google Play Registration ··· 217

26. ALERT DIALOG TUTORIAL ·· 219

27. ANIMATIONS ·· 234

Tween Animation·· 234

Zoom in animation ·· 235

28. AUDIO CAPTURE ··· 250

29. AUDIO MANAGER ··· 263

30. AUTOCOMPLETE ··· 276

31. BEST PRACTICES ··· 286

Best Practices - User input ·· 286
AsyncTask Vs Services. ··· 286

Best Practices - Performance ·· 287

Best Practices - Security and privacy ··· 287

32. BLUETOOTH ··· 299

33. CAMERA ·· 314

Using existing android camera application in our application ··· 314

Directly using Camera API Provided by Android in our Application ··· 323

34. CLIPBOARD ··· 335

Copying data ··· 335

Pasting data ·· 336

35. CUSTOM FONTS ··· 346

viii

36. DATA BACKUP ·· 352

Test your BackupAgent ··· 356
Install your application on a suitable Android system image. ··· 356
Ensure data backup is enabled ·· 356
Performing backup ··· 357
Uninstall and reinstall your application ··· 357

37. DEVELOPER TOOLS ··· 358

SDK tools ·· 358

Android ··· 359

DDMS ·· 359
Running DDMS ··· 359
How it works ·· 359
Using DDMS ··· 360
Making SMS·· 360
Making Call ··· 361

Capturing ScreenShot ··· 363

Sqlite3 ··· 364
Use Sqlite3 from a remote shell. ·· 364
Using Sqlite3 directly ·· 365

Platform tools ··· 365

38. EMULATOR ·· 366

Creating AVD ·· 366

Creating Snapshots ··· 366

Changing Orientation ·· 366

Emulator Commands. ··· 368

Emulator - Sending SMS ·· 369
Sending SMS through Telnet. ··· 369

Emulator - Making Call ·· 370

Emulator - Transferring files ·· 371

39. FACEBOOK INTEGRATION ·· 372

Integrating Facebook SDK ··· 372
Generating application signature ··· 372
Registering your application ·· 373

ix

Downloading SDK and integrating it ·· 373
Creating facebook login application ··· 373

Intent share ·· 374

40. GESTURES ·· 384

Handling Pinch Gesture ··· 384

41. GOOGLE MAPS ··· 395

Adding Google Map ·· 395
Google Map - Activity file ··· 395
Google Map - Layout file ·· 395
Google Map - AndroidManifest file ··· 395

Customizing Google Map ·· 396
Adding Marker ··· 396
Changing Map Type·· 396
Enable/Disable zoom ··· 397

Integrating Google Maps··· 398

Download and configure. Google Play Services SDK ·· 399
Install Google services SDK ·· 399
Import SDK to eclipse ··· 399
Configure your project with SDK ·· 399

Obtaining the API key ··· 400
Getting Certificate from KeyTool ··· 400
Getting key from Google Console ·· 401

Specify Android Manifest Settings ·· 401

Adding Google Maps to your application. ··· 402

42. IMAGE EFFECTS ·· 408

43. IMAGE SWITCHER ·· 421

44. INTERNAL STORAGE ·· 431

Writing file ·· 431

Reading file ··· 431

45. JETPLAYER ··· 442

Using JetCreator·· 444

x

Installing python··· 444
Installing WxPython ··· 444
Running JetCreator··· 444
Creating JetContent ··· 445

Verifying Results ··· 446

46. JSON PARSER ·· 448

JSON - Elements ·· 449

JSON - Parsing ··· 449

47. LINKEDIN INTEGRATION ··· 463

Integrating LinkedIn SDK ··· 463
Registering your application ·· 463
Downloading SDK and integrating it ·· 464
Posting updates on LinkedIn application ··· 464

Intent share ·· 464

48. LOADING SPINNER ··· 474

49. LOCALIZATION ·· 481

Localizing Strings ··· 481
Italy, res/values-it/strings.xml ··· 481
Spanish, res/values-it/strings.xml ·· 482
French, res/values-it/strings.xml ··· 482

50. LOGIN SCREEN ··· 489

51. MEDIA PLAYER ··· 501

52. MULTITOUCH ··· 517

53. NAVIGATION ·· 530

Providing Up Navigation ··· 530

Handling device back button ··· 530

54. NETWORK CONNECTION ·· 542

Checking Network Connection ·· 542

xi

Performing Network Operations ··· 543

55. NFC GUIDE ··· 556

How It Works: ··· 556
Three Modes of Operation ··· 556

How it works with Android: ·· 556

Future Applications ··· 558

56. PHP/MYSQL ·· 559

PHP - MYSQL ··· 559
Creating Database ·· 559
Creating Tables ··· 559
Inserting Values in tables ··· 560
PHP - GET and POST methods ·· 560

Android - Connecting MYSQL ·· 561
Connecting Via Get Method ··· 561
Connecting Via Post Method ··· 561
PHP - MYSQL part ··· 562
Android Part ··· 563

57. PROGRESS CIRCLE ·· 579

58. PROGRESS BAR USING PROGRESS DIALOG ··· 588

59. PUSH NOTIFICATION ·· 598

60. RENDERSCRIPT ··· 611

How RenderScript Works: ··· 611

How to Begin: ··· 611
A RenderScript Kernel ·· 611
RenderScript APIs ··· 612
How to use RenderScript Support Library ·· 613

61. RSS READER ·· 615

RSS Example ··· 615

RSS Elements ·· 615

Parsing RSS ··· 616

xii

62. SCREEN CAST ·· 629

Screen Cast Steps ·· 629
Step 1 ··· 629
Step ·· 629
Step 3 ··· 629
Step ·· 629
Step 5 ··· 630

63. SDK MANAGER ··· 633

Running Android SDK Manager: ·· 633

Recommended ·· 634

Enabling Proxy in Android SDK Manager ··· 634

Adding New Third Party Sites ·· 635

64. SENSORS ·· 637

Getting list of sensors supported. ··· 638

65. SESSION MANAGEMENT ·· 645

Shared Preferences ··· 645

Session Management through Shared Preferences ··· 646

66. SIP PROTOCOL ·· 662

Applications ·· 662

Requirements ··· 662

SIP Classes··· 662

Functions of SIP ·· 663

Components of SIP ·· 663

UAC ··· 663

UAS ··· 663

SipManager··· 663

67. SPELLING CHECKER ·· 665

xiii

68. SQLITE DATABASE ·· 675

Database - Package ··· 675

Database - Creation ·· 675

Database - Insertion ·· 676

Database - Fetching ·· 676

Database - Helper class ··· 677

69. SUPPORT LIBRARY ·· 706

Support Library Features ··· 706

Downloading the Support Libraries ··· 707
Choosing Support Libraries ·· 708
Changes in Android.Manifest ··· 708
API Version ··· 708

70. TESTING ··· 709

Test Structure ··· 709

Testing Tools in Android ··· 709

JUnit ··· 710

Monkey··· 711
Monkey features ·· 711
Monkey Usage·· 711

71. TEXT TO SPEECH ··· 720

72. TEXTURE VIEW ··· 731

73. TWITTER INTEGRATION ·· 741

Integrating Twitter SDK ··· 741
Registering your application ·· 741
Downloading SDK and integrating it ·· 743
Posting tweets on twitter application ·· 743

Intent share ·· 743

74. UI DESIGN ·· 753

UI screen components ·· 753

xiv

Understanding Screen Components ·· 754
View and ViewGroups ·· 754
Types of layout ··· 754
Linear Layout ·· 754
AbsoluteLayout ·· 755
TableLayout ·· 755
RelativeLayout ·· 756
FrameLayout ·· 756

Units of Measurement ·· 757

Screen Densities ·· 758

Optimizing layouts ·· 758

75. UI PATTERNS ·· 759

UI Patterns components ··· 759

Action Bar ··· 759
Action Bar Components ··· 759

Confirming and Acknowledging ·· 760
Confirming ·· 760
Acknowledging ··· 761

Settings ··· 761
Placement of Settings ·· 761

Help ·· 761
Placement of Help ·· 762

Selection ··· 762
Using Contextual Action Bar (CAB)··· 762

76. UI TESTING ·· 763

uiautomatorviewer ··· 763

uiautomator ·· 767

77. WEBVIEW ··· 775

78. WI-FI ·· 785

79. WIDGETS ·· 793

Widget - XML file ·· 793

Widget - Layout file ··· 793

xv

Widget - Java file··· 793

Widget - Manifest file ··· 794

80. XML PARSER ··· 803

XML - Elements ··· 803

XML - Parsing ·· 804

Android

1

What is Android?

Android is an open source and Linux-based Operating System for mobile

devices such as smartphones and tablet computers. Android was developed by

the Open Handset Alliance, led by Google, and other companies.

Android offers a unified approach to application development for mobile devices

which means developers need to develop only for Android, and their applications

should be able to run on different devices powered by Android.

The first beta version of the Android Software Development Kit (SDK) was

released by Google in 2007, whereas the first commercial version, Android 1.0,

was released in September 2008.

On June 27, 2012, at the Google I/O conference, Google announced the next

Android version, 4.1 Jelly Bean. Jelly Bean is an incremental update, with the

primary aim of improving the user interface, both in terms of functionality and

performance.

The source code for Android is available under free and open source software

licenses. Google publishes most of the code under the Apache License version

2.0 and the rest, Linux kernel changes, under the GNU General Public License

version 2.

Features of Android

Android is a powerful operating system competing with Apple 4GS and support

great features. Few of them are listed below:

Feature Description

Beautiful UI Android OS basic screen provides a beautiful and intuitive

user interface.

Connectivity GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi,

LTE, NFC and WiMAX.

Storage SQLite, a lightweight relational database, is used for data

storage purposes.

1. OVERVIEW

Android

2

Media support H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC,

AAC 5.1, MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF,

and BMP

Messaging SMS and MMS

Web browser Based on the open-source WebKit layout engine, coupled

with Chrome's V8 JavaScript engine supporting HTML5 and

CSS3.

Multi-touch Android has native support for multi-touch which was

initially made available in handsets such as the HTC Hero.

Multi-tasking User can jump from one task to another and same time

various application can run simultaneously.

Resizable widgets Widgets are resizable, so users can expand them to show

more content or shrink them to save space

Multi-Language Support single direction and bi-directional text.

GCM Google Cloud Messaging (GCM) is a service that let

developers send short message data to their users on

Android devices, without needing a proprietary sync

solution.

Wi-Fi Direct A technology that let apps discover and pair directly, over

a high-bandwidth peer-to-peer connection.

Android Beam A popular NFC-based technology that let users instantly

share, just by touching two NFC-enabled phones together.

Android Applications

Android applications are usually developed in the Java language using the

Android Software Development Kit.

Once developed, Android applications can be packaged easily and sold out either

through a store such as Google Play or the Amazon Appstore.

Android powers hundreds of millions of mobile devices in more than 190

countries around the world. It's the largest installed base of any mobile platform

Android

3

and is growing fast. Every day more than 1 million new Android devices are

activated worldwide.

This tutorial has been written with an aim to teach you how to develop and

package Android application. We will start from environment setup for Android

application programming and then drill down to look into various aspects of

Android applications.

Android

4

You will be glad to know that you can start your Android application

development on either of the following operating systems:

 Microsoft Windows XP or later version.

 Mac OS X 10.5.8 or later version with Intel chip.

 Linux including GNU C Library 2.7 or later.

Second point is that all the required tools to develop Android applications are

freely available and can be downloaded from the Web. Following is the list of

software's you will need before you start your Android application programming.

 Java JDK5 or JDK6

 Android SDK

 Eclipse IDE for Java Developers (optional)

 Android Development Tools (ADT) Eclipse Plugin (optional)

Here last two components are optional and if you are working on Windows

machine then these components make your life easy while doing Java based

application development. So let us have a look at how to proceed to set the

required environment.

Step 1 - Setup Java Development Kit (JDK)

You can download the latest version of Java JDK from Oracle's Java site: Java SE

Downloads. You will find instructions for installing JDK in downloaded files, follow

the given instructions to install and configure the setup. Finally, set PATH and

JAVA_HOME environment variables to refer to the directory that

contains java and javac, typically java_install_dir/bin and java_install_dir

respectively.

If you are running Windows and have installed the JDK in C:\jdk1.6.0_15, you

would have to put the following line in your C:\autoexec.bat file.

set PATH=C:\jdk1.6.0_15\bin;%PATH%

set JAVA_HOME=C:\jdk1.6.0_15

Alternatively, you could also right-click on My Computer, select Properties,

then Advanced, then Environment Variables. Then, you would update the PATH

value and press the OK button.

On Linux, if the SDK is installed in /usr/local/jdk1.6.0_15 and you use the C

shell, you would put the following code into your .cshrc file.

2. ENVIORNMENT SETUP

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Android

5

setenv PATH /usr/local/jdk1.6.0_15/bin:$PATH

setenv JAVA_HOME /usr/local/jdk1.6.0_15

Alternatively, if you use an Integrated Development Environment (IDE) Eclipse,

then it will know automatically where you have installed your Java.

Step 2 - Setup Android SDK

You can download the latest version of Android SDK from Android’s official

website: http://developer.android.com/sdk/index.html. If you are installing SDK

on Windows machine, then you will find ainstaller_rXX-windows.exe, so just

download and run this exe which will launch Android SDK Tool Setup wizard to

guide you throughout the installation, so just follow the instructions carefully.

Finally, you will have Android SDK Tools installed on your machine.

If you are installing SDK either on Mac OS or Linux, check the instructions

provided along with the downloaded android-sdk_rXX-macosx.zip file for Mac OS

and android-sdk_rXX-linux.tgz file for Linux. This tutorial will consider that you

are going to setup your environment on Windows machine having Windows 7

operating system.

So let's launch Android SDK Manager using the option All Programs > Android

SDK Tools > SDK Manager, this will give you following window:

http://developer.android.com/sdk/index.html

Android

6

Once you launched SDK manager, it is time to install other required packages.

By default it will list down total 7 packages to be installed, but we will suggest to

de-select Documentation for Android SDK and Samples for SDK packages to

reduce installation time. Next click the Install 7 Packages button to proceed,

which will display following dialogue box:

If you agree to install all the packages, select Accept All radio button and

proceed by clicking Install button. Now let SDK manager do its work and you

go, pick up a cup of coffee and wait until all the packages are installed. It may

take some time depending on your internet connection. Once all the packages

are installed, you can close SDK manager using top-right cross button.

Step 3 - Setup Eclipse IDE

All the examples in this tutorial have been written using Eclipse IDE. So we

would suggest you should have latest version of Eclipse installed on your

machine.

To install Eclipse IDE, download the latest Eclipse binaries from

http://www.eclipse.org/downloads/. Once you have downloaded the installation,

unpack the binary distribution into a convenient location. For example in

C:\eclipse on windows, or /usr/local/eclipse on Linux and finally set PATH

variable appropriately.

Eclipse can be started by executing the following commands on windows

machine, or you can simply double click on eclipse.exe

 %C:\eclipse\eclipse.exe

Eclipse can be started by executing the following command on Linux machine:

$/usr/local/eclipse/eclipse

http://www.eclipse.org/downloads/

Android

7

After a successful startup, if everything is fine then it should display the

following result:

Step 4 - Setup Android Development Tools (ADT) Plugin

This step will help you in setting Android Development Tool plugin for Eclipse.

Let's start with launching Eclipse and then, choose Help > Software Updates

> Install New Software. This will display the following dialogue box.

Android

8

Now use Add button to add ADT Plugin as name and https://dl-

ssl.google.com/android/eclipse/ as the location. Then click OK to add this

location. As soon as you will click OK button to add this location, Eclipse starts

searching for the plug-in available in the given location and finally lists down the

found plugins.

Android

9

Now select all the listed plug-ins using Select All button and click Next button

which will guide you ahead to install Android Development Tools and other

required plugins.

Step 5 - Create Android Virtual Device

To test your Android applications you will need a virtual Android device. So

before we start writing our code, let us create an Android virtual device. Launch

Android AVD Manager using Eclipse menu options Window > AVD

Manager> which will launch Android AVD Manager. Use New button to create a

new Android Virtual Device and enter the following information, before

clicking Create AVD button.

Android

10

If your AVD is created successfully it means your environment is ready for

Android application development. If you like, you can close this window using

top-right cross button. Better you re-start your machine and once you are done

with this last step, you are ready to proceed for your first Android example but

before that we will see few more important concepts related to Android

Application Development.

Android

11

Android operating system is a stack of software components which is roughly

divided into five sections and four main layers as shown below in the

architecture diagram.

Linux kernel

At the bottom of the layers is Linux - Linux 2.6 with approximately 115 patches.

This provides basic system functionality like process management, memory

management, device management like camera, keypad, display etc. Also, the

kernel handles all the things that Linux is really good at, such as networking and

a vast array of device drivers, which take the pain out of interfacing to

peripheral hardware.

Libraries

On top of Linux kernel there is a set of libraries including open-source Web

browser engine WebKit, well known library libc, SQLite database which is a

useful repository for storage and sharing of application data, libraries to play and

record audio and video, SSL libraries responsible for Internet security etc.

3. ARCHITECTURE

Android

12

Android Runtime

This is the third section of the architecture and available on the second layer

from the bottom. This section provides a key component called Dalvik Virtual

Machine which is a kind of Java Virtual Machine specially designed and

optimized for Android.

The Dalvik VM makes use of Linux core features like memory management and

multi-threading, which is intrinsic in the Java language. The Dalvik VM enables

every Android application to run in its own process, with its own instance of the

Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable Android

application developers to write Android applications using standard Java

programming language.

Application Framework

The Application Framework layer provides many higher-level services to

applications in the form of Java classes. Application developers are allowed to

make use of these services in their applications.

Applications

You will find all the Android application at the top layer. You will write your

application to be installed on this layer only. Examples of such applications are

Contacts Books, Browser, Games, etc.

Android

13

Application components are the essential building blocks of an Android

application. These components are loosely coupled by the application manifest

file AndroidManifest.xml that describes each component of the application and

how they interact.

There are following four main components that can be used within an Android

application:

Components Description

Activities They dictate the UI and handle the user interaction to

the smartphone screen

Services They handle background processing associated with an

application.

Broadcast Receivers They handle communication between Android OS and

applications.

Content Providers They handle data and database management issues.

Activities

An activity represents a single screen with a user interface. For example, an

email application might have one activity that shows a list of new emails,

another activity to compose an email, and one for reading emails. If an

application has more than one activity, then one of them should be marked as

the activity that is presented when the application is launched.

An activity is implemented as a subclass of Activity class as follows:

public class MainActivity extends Activity

{

}

4. APPLICATIONS COMPONENT

Android

14

Services

A service is a component that runs in the background to perform long-running

operations. For example, a service might play music in the background while the

user is in a different application, or it might fetch data over the network without

blocking user interaction with an activity.

A service is implemented as a subclass of Service class as follows:

public class MyService extends Service

{

}

Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other

applications or from the system. For example, applications can also initiate

broadcasts to let other applications know that some data has been downloaded

to the device and is available for them to use, so this is broadcast receiver who

will intercept this communication and will initiate appropriate action.

A broadcast receiver is implemented as a subclass of BroadcastReceiver class

and each message is broadcasted as an Intent object.

public class MyReceiver extends BroadcastReceiver

{

}

Content Providers

A content provider component supplies data from one application to others on

request. Such requests are handled by the methods of

the ContentResolver class. The data may be stored in the file system, the

database or somewhere else entirely.

A content provider is implemented as a subclass of ContentProvider class and

must implement a standard set of APIs that enable other applications to perform

transactions.

public class MyContentProvider extends ContentProvider

{

Android

15

}

We will go through these tags in detail while covering application components in

individual chapters.

Additional Components

There are additional components which will be used in the construction of above

mentioned entities, their logic, and wiring between them. These components

are:

Components Description

Fragments Represent a behavior or a portion of user interface in an

Activity.

Views UI elements that are drawn onscreen including buttons,

lists forms etc.

Layouts View hierarchies that control screen format and

appearance of the views.

Intents Messages wiring components together.

Resources External elements, such as strings, constants and

drawable pictures.

Manifest Configuration file for the application.

Android

16

Let us start actual programming with Android Framework. Before you start

writing your first example using Android SDK, you have to make sure that you

have setup your Android development environment properly as explained

in Android - Environment Setup tutorial. We also assume, that you have a little bit

working knowledge with Eclipse IDE.

So let us proceed to write a simple Android Application which will print "Hello

World!".

Create Android Application

The first step is to create a simple Android Application using Eclipse IDE. Follow

the option File -> New -> Project and finally select Android New

Application wizard from the wizard list. Now name your application

as HelloWorld using the wizard window as follows:

Next, follow the instructions provided and keep all other entries as default till the

final step. Once your project is created successfully, you will have the following

project screen:

5. HELLO WORLD EXAMPLE

http://localhost/android/android_environment_setup.htm

Android

17

Anatomy of Android Application

Before you run your app, you should be aware of a few directories and files in

the Android project:

Android

18

S.N. Folder, File & Description

1 src

This contains the .java source files for your project. By default, it

includes anMainActivity.java source file having an activity class that runs

when your app is launched using the app icon.

2 gen

This contains the .R file, a compiler-generated file that references all the

Android

19

resources found in your project. You should not modify this file.

3 bin

This folder contains the Android package files .apk built by the ADT

during the build process and everything else needed to run an Android

application.

4 res/drawable-hdpi

This is a directory for drawable objects that are designed for high-

density screens.

5 res/layout

This is a directory for files that define your app's user interface.

6 res/values

This is a directory for other various XML files that contain a collection of

resources, such as strings and colors definitions.

7 AndroidManifest.xml

This is the manifest file which describes the fundamental characteristics

of the app and defines each of its components.

Following section will give a brief overview few of the important application files.

The Main Activity File

The main activity code is a Java file MainActivity.java. This is the actual

application file which ultimately gets converted to a Dalvik executable and runs

your application. Following is the default code generated by the application

wizard for Hello World! application:

package com.example.helloworld;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.MenuItem;

import android.support.v4.app.NavUtils;

Android

20

public class MainActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.activity_main, menu);

 return true;

 }

}

Here, R.layout.activity_main refers to the activity_main.xml file located in

the res/layout folder. The onCreate() method is one of many methods that are

fired when an activity is loaded.

The Manifest File

Whatever component you develop as a part of your application, you must

declare all its components in a manifest file called AndroidManifest.xml which

resides at the root of the application project directory. This file works as an

interface between Android OS and your application, so if you do not declare your

component in this file, then it will not be considered by the OS. For example, a

default manifest file will look like as following file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.helloworld"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="15" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

Android

21

 <activity

 android:name=".MainActivity"

 android:label="@string/title_activity_main" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 </application>

</manifest>

Here <application>...</application> tags enclosed the components related to

the application. Attribute android:icon will point to the application icon available

underres/drawable-hdpi. The application uses the image named ic_launcher.png

located in the drawable folders.

The <activity> tag is used to specify an activity and android:name attribute

specifies the fully qualified class name of the Activity subclass and

the android:label attributes specifies a string to use as the label for the activity.

You can specify multiple activities using <activity> tags.

The action for the intent filter is named android.intent.action.MAIN to indicate

that this activity serves as the entry point for the application. The category for

the intent-filter is named android.intent.category.LAUNCHER to indicate that the

application can be launched from the device's launcher icon.

The @string refers to the strings.xml file explained below.

Hence, @string/app_name refers to the app_name string defined in the

strings.xml file, which is "HelloWorld". Similar way, other strings get populated

in the application.

Following is the list of tags which you will use in your manifest file to specify

different Android application components:

 <activity>elements for activities

 <service> elements for services

 <receiver> elements for broadcast receivers

 <provider> elements for content providers

The Strings File

The strings.xml file is located in the res/values folder and it contains all the text

that your application uses. For example, the names of buttons, labels, default

Android

22

text, and similar types of strings go into this file. This file is responsible for their

textual content. For example, a default string file will look like as following file:

<resources>

 <string name="app_name">HelloWorld</string>

 <string name="hello_world">Hello world!</string>

 <string name="menu_settings">Settings</string>

 <string name="title_activity_main">MainActivity</string>

</resources>

The R File

The gen/com.example.helloworld/R.java file is the glue between the activity

Java files likeMainActivity.java and the resources like strings.xml. It is an

automatically generated file and you should not modify the content of the R.java

file. Following is a sample of R.java file:

/* AUTO-GENERATED FILE. DO NOT MODIFY.

 *

 * This class was automatically generated by the

 * aapt tool from the resource data it found. It

 * should not be modified by hand.

 */

package com.example.helloworld;

public final class R {

 public static final class attr {

 }

 public static final class dimen {

 public static final int padding_large=0x7f040002;

 public static final int padding_medium=0x7f040001;

 public static final int padding_small=0x7f040000;

 }

 public static final class drawable {

 public static final int ic_action_search=0x7f020000;

 public static final int ic_launcher=0x7f020001;

Android

23

 }

 public static final class id {

 public static final int menu_settings=0x7f080000;

 }

 public static final class layout {

 public static final int activity_main=0x7f030000;

 }

 public static final class menu {

 public static final int activity_main=0x7f070000;

 }

 public static final class string {

 public static final int app_name=0x7f050000;

 public static final int hello_world=0x7f050001;

 public static final int menu_settings=0x7f050002;

 public static final int title_activity_main=0x7f050003;

 }

 public static final class style {

 public static final int AppTheme=0x7f060000;

 }

}

The Layout File

The activity_main.xml is a layout file available in res/layout directory that is

referenced by your application when building its interface. You will modify this

file very frequently to change the layout of your application. For your "Hello

World!" application, this file will have following content related to default layout:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <TextView

 android:layout_width="wrap_content"

Android

24

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:padding="@dimen/padding_medium"

 android:text="@string/hello_world"

 tools:context=".MainActivity" />

</RelativeLayout>

This is an example of simple RelativeLayout which we will study in a separate

chapter. TheTextView is an Android control used to build the GUI and it has

various attributes like android:layout_width, android:layout_height, etc., which

are being used to set its width and height etc. The @string refers to the

strings.xml file located in the res/values folder. Hence, @string/hello_world

refers to the hello string defined in the strings.xml file, which is "Hello World!".

Running the Application

Let's try to run our Hello World! application we just created. We assume, you

had created your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Android

25

Congratulations! You have developed your first Android Application and now just

keep following rest of the tutorial step by step to become a great Android

Developer. All the very best!

Android

26

There are many more items which you use to build a good Android application.

Apart from coding for the application, you take care of various

other resources like static content that your code uses, such as bitmaps, colors,

layout definitions, user interface strings, animation instructions, and more.

These resources are always maintained separately in various sub-directories

under res/ directory of the project.

This tutorial will explain you how you can organize your application resources,

specify alternative resources and access them in your applications.

Organize Resources

You should place each type of resource in a specific subdirectory of your

project's res/directory. For example, here's the file hierarchy for a simple

project:

MyProject/

 src/

 MyActivity.java

 res/

 drawable/

 icon.png

 layout/

 activity_main.xml

 info.xml

 values/

 strings.xml

The res/ directory contains all the resources in various sub-directories. Here we

have an image resource, two layout resources, and a string resource file.

Following table gives a detail about the resource directories supported inside

project res/ directory.

Directory Resource Type

anim/ XML files that define property animations. They are saved in

res/anim/ folder and accessed from the R.anim class.

6. ORGANIZING & ACCESSING THE
RESOURCES

Android

27

color/ XML files that define a state list of colors. They are saved in

res/color/ and accessed from the R.color class.

drawable/ Image files like .png, .jpg, .gif or XML files that are compiled

into bitmaps, state lists, shapes, animation drawables. They

are saved in res/drawable/ and accessed from

the R.drawable class.

layout/ XML files that define a user interface layout. They are saved in

res/layout/ and accessed from the R.layout class.

menu/ XML files that define application menus, such as an Options

Menu, Context Menu, or Sub Menu. They are saved in

res/menu/ and accessed from the R.menu class.

raw/ Arbitrary files to save in their raw form. You need to call

Resources.openRawResource() with the resource ID, which is

R.raw.filename to open such raw files.

values/ XML files that contain simple values, such as strings, integers,

and colors. For example, here are some filename conventions

for resources you can create in this directory:

arrays.xml for resource arrays, and accessed from the

R.array class.

integers.xml for resource integers, and accessed from the

R.integer class.

bools.xml for resource boolean, and accessed from the

R.bool class.

colors.xml for color values, and accessed from the R.color

class.

dimens.xml for dimension values, and accessed from the

R.dimen class.

strings.xml for string values, and accessed from the R.string

class.

styles.xml for styles, and accessed from the R.style class.

xml/ Arbitrary XML files that can be read at runtime by calling

Resources.getXML(). You can save various configuration files

here which will be used at run time.

Android

28

Alternative Resources

Your application should provide alternative resources to support specific device

configurations. For example, you should include alternative drawable resources

(i.e. images) for different screen resolution and alternative string resources for

different languages. At runtime, Android detects the current device configuration

and loads the appropriate resources for your application.

To specify configuration-specific alternatives for a set of resources, follow these

steps:

 Create a new directory in res/ named in the form <resources_name>-

<config_qualifier>. Here resources_name will be any of the resources

mentioned in the above table, like layout, drawable etc. The qualifier will

specify an individual configuration for which these resources are to be

used. You can check official documentation for a complete list of qualifiers

for different type of resources.

 Save the respective alternative resources in this new directory. The

resource files must be named exactly the same as the default resource

files as shown in the below example, but these files will have content

specific to the alternative. For example though image file name will be

same but for high resolution screen, its resolution will be high.

Below is an example which specifies images for a default screen and alternative

images for high resolution screen.

MyProject/

 src/

 MyActivity.java

 res/

 drawable/

 icon.png

 background.png

 drawable-hdpi/

 icon.png

 background.png

 layout/

 activity_main.xml

 info.xml

 values/

 strings.xml

Android

29

Below is another example which specifies layout for a default language and

alternative layout for Arabic language (layout-ar/).

MyProject/

 src/

 MyActivity.java

 res/

 drawable/

 icon.png

 background.png

 drawable-hdpi/

 icon.png

 background.png

 layout/

 activity_main.xml

 info.xml

 layout-ar/

 main.xml

 values/

 strings.xml

Accessing Resources

During your application development you will need to access defined resources

either in your code, or in your layout XML files. Following section explains how to

access your resources in both the scenarios:

Accessing Resources in Code

When your Android application is compiled, a R class gets generated, which

contains resource IDs for all the resources available in your res/ directory. You

can use R class to access that resource using sub-directory and resource name

or directly resource ID.

Example:

To access res/drawable/myimage.png and set an ImageView you will use

following code:

ImageView imageView = (ImageView) findViewById(R.id.myimageview);

Android

30

imageView.setImageResource(R.drawable.myimage);

Here first line of the code uses the R.id.myimageview to get ImageView defined

with idmyimageview in a Layout file. Second line of code uses

the R.drawable.myimage to get an image with name myimage available in

drawable sub-directory under /res.

Example:

Consider next example where res/values/strings.xml has following definition:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello, World!</string>

</resources>

Now you can set the text on a TextView object with ID msg using a resource ID

as follows:

TextView msgTextView = (TextView) findViewById(R.id.msg);

msgTextView.setText(R.string.hello);

Example:

Consider a layout res/layout/activity_main.xml with the following definition:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

<TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a TextView" />

<Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a Button" />

</LinearLayout>

Android

31

This application code will load this layout for an Activity, in the onCreate()

method as follows:

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main_activity);

}

Accessing Resources in XML

Consider the following resource XML res/values/strings.xml file that includes a

color resource and a string resource:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="opaque_red">#f00</color>

 <string name="hello">Hello!</string>

</resources>

Now you can use these resources in the following layout file to set the text color

and text string as follows:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textColor="@color/opaque_red"

 android:text="@string/hello" />

Now if you go through the previous chapter once again where we have

explained Hello World! example, surely you will have better understanding on

all the concepts explained in this chapter. So we highly recommend to check

previous chapter for working example and check how we have used various

resources at very basic level.

Android

32

An activity represents a single screen with a user interface. For example, an

email application might have one activity that shows a list of new emails,

another activity to compose an email, and another activity for reading emails. If

an application has more than one activity, then one of them should be marked

as the activity that is presented when the application is launched.

If you have worked with C, C++ or Java programming language then you must

have seen that your program starts from main() function. Very similar way,

Android system initiates its program within an Activity starting with a call

on onCreate() callback method. There is a sequence of callback methods that

start up an activity and a sequence of callback methods that tear down an

activity as shown in the below Activity lifecycle diagram: (image courtesy:

android.com)

The Activity class defines the following callbacks i.e. events. You don't need to

implement all the callback methods. However, it's important that you

understand each one and implement those that ensure your app behaves the

way users expect.

Callback Description

onCreate() This is the first callback and called when the activity is first

created.

onStart() This callback is called when the activity becomes visible to the

7. ACTIVITIES

Android

33

user.

onResume() This is called when the user starts interacting with the

application.

onPause() The paused activity does not receive user input and cannot

execute any code and called when the current activity is being

paused and the previous activity is being resumed.

onStop() This callback is called when the activity is no longer visible.

onDestroy() This callback is called before the activity is destroyed by the

system.

onRestart() This callback is called when the activity restarts after stopping

it.

Example:

This example will take you through simple steps to show Android application activity

life cycle. Follow the below mentioned steps to modify the Android application we

created in Hello World Example chapter:

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

HelloWorld under a package com.example.helloworld as explained in

the Hello World Example chapter.

2 Modify main activity file MainActivity.java as explained below. Keep rest

of the files unchanged.

3 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.helloworld/MainActivity.java. This file includes each of

the fundamental lifecycle methods. The Log.d() method has been used to

generate log messages:

package com.example.helloworld;

Android

34

import android.os.Bundle;

import android.app.Activity;

import android.util.Log;

public class MainActivity extends Activity {

 String msg = "Android : ";

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Log.d(msg, "The onCreate() event");

 }

 /** Called when the activity is about to become visible. */

 @Override

 protected void onStart() {

 super.onStart();

 Log.d(msg, "The onStart() event");

 }

 /** Called when the activity has become visible. */

 @Override

 protected void onResume() {

 super.onResume();

 Log.d(msg, "The onResume() event");

 }

 /** Called when another activity is taking focus. */

 @Override

 protected void onPause() {

Android

35

 super.onPause();

 Log.d(msg, "The onPause() event");

 }

 /** Called when the activity is no longer visible. */

 @Override

 protected void onStop() {

 super.onStop();

 Log.d(msg, "The onStop() event");

 }

 /** Called just before the activity is destroyed. */

 @Override

 public void onDestroy() {

 super.onDestroy();

 Log.d(msg, "The onDestroy() event");

 }

}

An activity class loads all the UI component using the XML file available

in res/layout folder of the project. Following statement loads UI components

from res/layout/activity_main.xml file:

setContentView(R.layout.activity_main);

An application can have one or more activities without any restrictions. Every

activity you define for your application must be declared in

your AndroidManifest.xml file and the main activity for your app must be

declared in the manifest with an <intent-filter> that includes the MAIN action

and LAUNCHER category as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.helloworld"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="15" />

Android

36

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:label="@string/title_activity_main" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 </application>

</manifest>

If either the MAIN action or LAUNCHER category are not declared for one of your

activities, then your app icon will not appear in the Home screen's list of apps.

Let's try to run our modified Hello World! application we just modified. We

assume, you had created your AVD while doing environment setup. To run the

app from Eclipse, open one of your project's activity files and click Run icon

from the toolbar. Eclipse installs the app on your AVD and starts it and if

everything is fine with your setup and application, it will display Emulator

window and you should see following log messages in LogCat window in Eclipse

IDE:

07-19 15:00:43.405: D/Android :(866): The onCreate() event

07-19 15:00:43.405: D/Android :(866): The onStart() event

07-19 15:00:43.415: D/Android :(866): The onResume() event

Android

37

Let us try to click Red button on the Android emulator and it will generate

following events messages in LogCat window in Eclipse IDE:

07-19 15:01:10.995: D/Android :(866): The onPause() event

07-19 15:01:12.705: D/Android :(866): The onStop() event

Let us again try to click Menu button on the Android emulator and it will

generate following events messages in LogCat window in Eclipse IDE:

07-19 15:01:13.995: D/Android :(866): The onStart() event

07-19 15:01:14.705: D/Android :(866): The onResume() event

Next, let us again try to click Back button on the Android emulator and it will

generate following events messages in LogCat window in Eclipse IDE and this

completes the Activity Life Cycle for an Android Application.

07-19 15:33:15.687: D/Android :(992): The onPause() event

07-19 15:33:15.525: D/Android :(992): The onStop() event

07-19 15:33:15.525: D/Android :(992): The onDestroy() event

Android

38

A service is a component that runs in the background to perform long-running

operations without needing to interact with the user. For example, a service

might play music in the background while the user is in a different application,

or it might fetch data over the network without blocking user interaction with an

activity. A service can essentially take two states:

State Description

Started A service is started when an application component, such as

an activity, starts it by calling startService(). Once started, a

service can run in the background indefinitely, even if the

component that started it is destroyed.

Bound A service is bound when an application component binds to it

by calling bindService(). A bound service offers a client-server

interface that allows components to interact with the service,

send requests, get results, and even do so across processes

with inter-process communication (IPC).

A service has lifecycle callback methods that you can implement to monitor

changes in the service's state and you can perform work at the appropriate

stage. The following diagram on the left shows the lifecycle when the service is

created with startService() and the diagram on the right shows the lifecycle

when the service is created with bindService():(image courtesy : android.com)

8. SERVICES

Android

39

To create a service, you create a Java class that extends the Service base class

or one of its existing subclasses. The Service base class defines various callback

methods and the most important are given below. You don't need to implement

all the callback methods. However, it is important that you understand each one

and implement those that ensure your app behaves the way users expect.

Callback Description

onStartCommand() The system calls this method when another component,

such as an activity, requests that the service be started,

by calling startService(). If you implement this method, it

is your responsibility to stop the service when its work is

done, by calling stopSelf() or stopService() methods.

onBind() The system calls this method when another component

wants to bind with the service by calling bindService(). If

you implement this method, you must provide an

interface that clients use to communicate with the

service, by returning an IBinder object. You must always

Android

40

implement this method, but if you don't want to allow

binding, then you should return null.

onUnbind() The system calls this method when all clients have

disconnected from a particular interface published by the

service.

onRebind() The system calls this method when new clients have

connected to the service, after it had previously been

notified that all had disconnected in its onUnbind(Intent).

onCreate() The system calls this method when the service is first

created using onStartCommand() or onBind(). This call is

required to perform one-time setup.

onDestroy() The system calls this method when the service is no

longer used and is being destroyed. Your service should

implement this to clean up any resources such as

threads, registered listeners, receivers, etc.

The following skeleton service demonstrates each of the lifecycle methods:

package com.tutorialspoint;

import android.app.Service;

import android.os.IBinder;

import android.content.Intent;

import android.os.Bundle;

public class HelloService extends Service {

 /** indicates how to behave if the service is killed */

 int mStartMode;

 /** interface for clients that bind */

 IBinder mBinder;

 /** indicates whether onRebind should be used */

 boolean mAllowRebind;

Android

41

 /** Called when the service is being created. */

 @Override

 public void onCreate() {

 }

 /** The service is starting, due to a call to startService() */

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 return mStartMode;

 }

 /** A client is binding to the service with bindService() */

 @Override

 public IBinder onBind(Intent intent) {

 return mBinder;

 }

 /** Called when all clients have unbound with unbindService() */

 @Override

 public boolean onUnbind(Intent intent) {

 return mAllowRebind;

 }

 /** Called when a client is binding to the service with

 bindService()*/

 @Override

 public void onRebind(Intent intent) {

 }

 /** Called when The service is no longer used and is being destroyed

 */

Android

42

 @Override

 public void onDestroy() {

 }

}

Example:

This example will take you through simple steps to show how to create your own

Android Service. Follow the below mentioned steps to modify the Android application

we created in Hello World Example chapter:

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

HelloWorld under a package com.example.helloworld as explained in

the Hello World Example chapter.

2 Modify main activity file MainActivity.java to

add startService() and stopService()methods.

3 Create a new java file MyService.java under the

package com.example.helloworld. This file will have implementation of

Android service related methods.

4 Define your service in AndroidManifest.xml file using <service.../> tag.

An application can have one or more services without any restrictions.

5 Modify the default content of res/layout/activity_main.xml file to include

two buttons in linear layout.

6 Define two

constants start_service and stop_service in res/values/strings.xml file.

7 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.helloworld/MainActivity.java. This file can include each

of the fundamental lifecycle methods. We have

added startService() and stopService() methods to start and stop the service.

Android

43

package com.example.helloworld;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.content.Intent;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.activity_main, menu);

 return true;

 }

 // Method to start the service

 public void startService(View view) {

 startService(new Intent(getBaseContext(), MyService.class));

 }

 // Method to stop the service

 public void stopService(View view) {

 stopService(new Intent(getBaseContext(), MyService.class));

 }

}

Following is the content of src/com.example.helloworld/MyService.java.

This file can have implementation of one or more methods associated with

Service based on requirements. For now we are going to implement only two

methods onStartCommand() and onDestroy():

Android

44

package com.example.helloworld;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.widget.Toast;

public class MyService extends Service {

 @Override

 public IBinder onBind(Intent arg0) {

 return null;

 }

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 // Let it continue running until it is stopped.

 Toast.makeText(this, "Service Started", Toast.LENGTH_LONG).show();

 return START_STICKY;

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 Toast.makeText(this, "Service Destroyed",

 Toast.LENGTH_LONG).show();

 }

}

Following is the modified content of AndroidManifest.xml file. Here we have

added <service.../> tag to include our service:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.helloworld"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

Android

45

 android:minSdkVersion="8"

 android:targetSdkVersion="15" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:label="@string/title_activity_main" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 <service android:name=".MyService" />

 </application>

</manifest>

Following will be the content of res/layout/activity_main.xml file to include

two buttons:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button android:id="@+id/btnStartService"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/start_service"

 android:onClick="startService"/>

 <Button android:id="@+id/btnStopService"

 android:layout_width="fill_parent"

Android

46

 android:layout_height="wrap_content"

 android:text="@string/stop_service"

 android:onClick="stopService" />

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<resources>

 <string name="app_name">HelloWorld</string>

 <string name="hello_world">Hello world!</string>

 <string name="menu_settings">Settings</string>

 <string name="title_activity_main">MainActivity</string>

 <string name="start_service">Start Service</string>

 <string name="stop_service">Stop Service</string>

</resources>

Let's try to run our modified Hello World! application we just modified. We

assume, you had created your AVD while doing environment setup. To run the

app from Eclipse, open one of your project's activity files and click Run icon

from the toolbar. Eclipse installs the app on your AVD and starts it and if

everything is fine with your setup and application, it will display following

Emulator window:

Android

47

Now to start your service, let's click on Start Service button, this will start the

service and as per our programming in onStartCommand() method, a

message Service Started will appear on the bottom of the simulator as follows:

Android

48

To stop the service, you can click the Stop Service button.

Android

49

Broadcast Receivers simply respond to broadcast messages from other

applications or from the system itself. These messages are sometime called

events or intents. For example, applications can also initiate broadcasts to let

other applications know that some data has been downloaded to the device and

is available for them to use, so this is broadcast receiver who will intercept this

communication and will initiate appropriate action.

There are following two important steps to make BroadcastReceiver work for the

system broadcasted intents:

 Creating the Broadcast Receiver.

 Registering Broadcast Receiver

There is one additional step in case you are going to implement your custom

intents; then you will have to create and broadcast those intents.

Creating the Broadcast Receiver

A broadcast receiver is implemented as a subclass of BroadcastReceiver class

and overriding the onReceive() method where each message is received as

an Intent object parameter.

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Toast.makeText(context, "Intent Detected.",

 Toast.LENGTH_LONG).show();

 }

}

Registering Broadcast Receiver

An application listens for specific broadcast intents by registering a broadcast

receiver in AndroidManifest.xml file. Consider we are going to

register MyReceiver for system generated event ACTION_BOOT_COMPLETED

which is fired by the system once the Android system has completed the boot

process.

9. BROADCAST RECEIVERS

Android

50

<application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <receiver android:name="MyReceiver">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED">

 </action>

 </intent-filter>

 </receiver>

</application>

Now whenever your Android device gets booted, it will be intercepted by

BroadcastReceiver MyReceiver and implemented logic inside onReceive() will be

executed.

There are several system generated events defined as final static fields in

the Intent class. The following table lists a few important system events.

Event Constant Description

android.intent.action.BATTERY_CHANGED Sticky broadcast containing the

charging state, level, and other

information about the battery.

android.intent.action.BATTERY_LOW Indicates low battery condition on

the device.

android.intent.action.BATTERY_OKAY Indicates the battery is now okay

after being low.

android.intent.action.BOOT_COMPLETED This is broadcast once, after the

system has finished booting.

android.intent.action.BUG_REPORT Show activity for reporting a bug.

android.intent.action.CALL Perform a call to someone specified

Android

51

by the data.

android.intent.action.CALL_BUTTON The user pressed the "call" button

to go to the dialer or other

appropriate UI for placing a call.

android.intent.action.DATE_CHANGED The date has changed.

android.intent.action.REBOOT Have the device reboot.

Broadcasting Custom Intents

If you want your application itself should generate and send custom intents then

you will have to create and send those intents by using

the sendBroadcast() method inside your activity class. If you use

the sendStickyBroadcast(Intent) method, the Intent is sticky, meaning

the Intent you are sending stays around after the broadcast is complete.

public void broadcastIntent(View view)

{

 Intent intent = new Intent();

 intent.setAction("com.tutorialspoint.CUSTOM_INTENT");

 sendBroadcast(intent);

}

This intent com.tutorialspoint.CUSTOM_INTENT can also be registered in similar

way as we have registered system generated intent.

<application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <receiver android:name="MyReceiver">

 <intent-filter>

 <action android:name="com.tutorialspoint.CUSTOM_INTENT">

 </action>

 </intent-filter>

Android

52

 </receiver>

</application>

Example:

This example will explain you how to create BroadcastReceiver to intercept custom

intent. Once you are familiar with custom intent, then you can program your

application to intercept system generated intents. So let's follow the below

mentioned steps to modify the Android application we created in Hello World

Example chapter:

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

HelloWorld under a package com.example.helloworld as explained in

the Hello World Example chapter.

2 Modify main activity file MainActivity.java to

add broadcastIntent() method.

3 Create a new java file called MyReceiver.java under the package

com.example.helloworld to define a BroadcastReceiver.

4 An application can handle one or more custom and system intents

without any restrictions. Every indent you want to intercept must be

registered in yourAndroidManifest.xml file using <receiver.../> tag.

5 Modify the default content of res/layout/activity_main.xml file to include

a button to broadcast intent.

6 Define a constant broadcast_intent in res/values/strings.xml file.

7 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.helloworld/MainActivity.java. This file can include each

of the fundamental lifecycle methods. We have added broadcastIntent() method

to broadcast a custom intent.

package com.example.helloworld;

Android

53

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.content.Intent;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.activity_main, menu);

 return true;

 }

 // broadcast a custom intent.

 public void broadcastIntent(View view)

 {

 Intent intent = new Intent();

 intent.setAction("com.tutorialspoint.CUSTOM_INTENT");

 sendBroadcast(intent);

 }

}

Following is the content of src/com.example.helloworld/MyReceiver.java:

package com.example.helloworld;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

Android

54

import android.widget.Toast;

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Toast.makeText(context, "Intent Detected.",

 Toast.LENGTH_LONG).show();

 }

}

Following will be the modified content of AndroidManifest.xml file. Here we have

added <service.../> tag to include our service:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.helloworld"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="15" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:label="@string/title_activity_main" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

Android

55

 <receiver android:name="MyReceiver">

 <intent-filter>

 <action android:name="com.tutorialspoint.CUSTOM_INTENT">

 </action>

 </intent-filter>

 </receiver>

 </application>

</manifest>

Following will be the content of res/layout/activity_main.xml file to include a

button to broadcast our custom intent:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button android:id="@+id/btnStartService"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/broadcast_intent"

 android:onClick="broadcastIntent"/>

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<resources>

 <string name="app_name">HelloWorld</string>

 <string name="hello_world">Hello world!</string>

 <string name="menu_settings">Settings</string>

 <string name="title_activity_main">MainActivity</string>

 <string name="broadcast_intent">Broadcast Intent</string>

</resources>

Android

56

Let's try to run our modified Hello World! application we just modified. We

assume, you had created your AVD while doing environment setup. To run the

app from Eclipse, open one of your project's activity files and click Run icon

from the toolbar. Eclipse installs the app on your AVD and starts it and if

everything is fine with your setup and application, it will display following

Emulator window:

Now to broadcast our custom intent, let's click on Broadcast Intent button, this

will broadcast our custom intent "com.tutorialspoint.CUSTOM_INTENT" which will

be intercepted by our registered BroadcastReceiver i.e. MyReceiver and as per

our implemented logic a toast will appear on the bottom of the simulator as

follows:

Android

57

You can try implementing other BroadcastReceiver to intercept system

generated intents like system boot-up, date changed, low battery etc.

Android

58

A content provider component supplies data from one application to other on

request. Such requests are handled by the methods of the ContentResolver

class. A content provider can use different ways to store its data and the data

can be stored in a database, in files, or even over a network.

Each Android application runs in its own process with its own permissions which

keeps an application data hidden from another application. But sometimes it is

required to share data across applications. This is where content providers

become very useful.

Content providers let you centralize content in one place and have many

different applications access it as needed. A content provider behaves very much

like a database where you can query it, edit its content, as well as add or delete

content using insert(), update(), delete(), and query() methods. In most cases

this data is stored in an SQlite database.

A content provider is implemented as a subclass of ContentProvider class and

must implement a standard set of APIs that enable other applications to perform

transactions.

public class MyContentProvider extends ContentProvider

{

}

Content URIs

To query a content provider, you specify the query string in the form of a URI

which has following format:

<prefix>://<authority>/<data_type>/<id>

Here is the detail of various parts of the URI:

Part Description

prefix This is always set to content://

10. CONTENT PROVIDERS

Android

59

authority This specifies the name of the content provider, for

example contacts, browser etc. For third-party content providers,

this could be the fully qualified name, such

as com.tutorialspoint.statusprovider

data_type This indicates the type of data that this particular provider

provides. For example, if you are getting all the contacts from

the Contacts content provider, then the data path would

be people and URI would look like thiscontent://contacts/people

id This specifies the specific record requested. For example, if you

are looking for contact number 5 in the Contacts content provider

then URI would look like this content://contacts/people/5.

Create Content Provider

This involves number of simple steps to create your own content provider.

 First of all you need to create a Content Provider class that extends the

ContentProviderbase class.

 Secondly, you need to define your content provider URI address which will

be used to access the content.

 Next you will need to create your own database to keep the content.

Usually, Android uses SQLite database and framework needs to

override onCreate() method which will use SQLite Open Helper method to

create or open the provider's database. When your application is

launched, the onCreate() handler of each of its Content Providers is called

on the main application thread.

 Next you will have to implement Content Provider queries to perform

different database specific operations.

 Finally register your Content Provider in your activity file using

<provider> tag.

Here is the list of methods which you need to override in Content Provider class

to have your Content Provider working:

 onCreate() This method is called when the provider is started.

 query() This method receives a request from a client. The result is

returned as a Cursor object.

 insert()This method inserts a new record into the content provider.

 delete() This method deletes an existing record from the content

provider.

Android

60

 update() This method updates an existing record from the content

provider.

 getType() This method returns the MIME type of the data at the given

URI.

Example:

This example will explain you how to create your own ContentProvider. So let's

follow the following steps similar to what we followed while creating Hello World

Example:

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

MyContentProvider under a package com.example.mycontentprovider,

with blank Activity.

2 Modify main activity file MainActivity.java to add two new methods

onClickAddName() and onClickRetrieveStudents().

3 Create a new java file called StudentsProvider.java under the package

com.example.mycontentprovider to define your actual provider and

associated methods.

4 Register your content provider in your AndroidManifest.xml file using

<provider.../> tag.

5 Modify the default content of res/layout/activity_main.xml file to include

a small GUI to add students records.

6 Define required constants in res/values/strings.xml file.

7 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.mycontentprovider/MainActivity.java. This file can

include each of the fundamental lifecycle methods. We have added two new

methods onClickAddName()and onClickRetrieveStudents() to handle user

interaction with the application.

package com.example.mycontentprovider;

Android

61

import android.net.Uri;

import android.os.Bundle;

import android.app.Activity;

import android.content.ContentValues;

import android.content.CursorLoader;

import android.database.Cursor;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void onClickAddName(View view) {

 // Add a new student record

 ContentValues values = new ContentValues();

 values.put(StudentsProvider.NAME,

 ((EditText)findViewById(R.id.txtName)).getText().toString());

 values.put(StudentsProvider.GRADE,

Android

62

 ((EditText)findViewById(R.id.txtGrade)).getText().toString());

 Uri uri = getContentResolver().insert(

 StudentsProvider.CONTENT_URI, values);

 Toast.makeText(getBaseContext(),

 uri.toString(), Toast.LENGTH_LONG).show();

 }

 public void onClickRetrieveStudents(View view) {

 // Retrieve student records

 String URL = "content://com.example.provider.College/students";

 Uri students = Uri.parse(URL);

 Cursor c = managedQuery(students, null, null, null, "name");

 if (c.moveToFirst()) {

 do{

 Toast.makeText(this,

 c.getString(c.getColumnIndex(StudentsProvider._ID)) +

 ", " + c.getString(c.getColumnIndex(StudentsProvider.NAME))

 +

 ", " + c.getString(c.getColumnIndex(

 StudentsProvider.GRADE)),

 Toast.LENGTH_SHORT).show();

 } while (c.moveToNext());

 }

 }

}

Create new file StudentsProvider.java

under com.example.mycontentprovider package and following is the content

of src/com.example.mycontentprovider/StudentsProvider.java:

package com.example.mycontentprovider;

import java.util.HashMap;

Android

63

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteQueryBuilder;

import android.net.Uri;

import android.text.TextUtils;

public class StudentsProvider extends ContentProvider {

 static final String PROVIDER_NAME = "com.example.provider.College";

 static final String URL = "content://" + PROVIDER_NAME + "/students";

 static final Uri CONTENT_URI = Uri.parse(URL);

 static final String _ID = "_id";

 static final String NAME = "name";

 static final String GRADE = "grade";

 private static HashMap<String, String> STUDENTS_PROJECTION_MAP;

 static final int STUDENTS = 1;

 static final int STUDENT_ID = 2;

 static final UriMatcher uriMatcher;

 static{

 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

 uriMatcher.addURI(PROVIDER_NAME, "students", STUDENTS);

 uriMatcher.addURI(PROVIDER_NAME, "students/#", STUDENT_ID);

 }

Android

64

 /**

 * Database specific constant declarations

 */

 private SQLiteDatabase db;

 static final String DATABASE_NAME = "College";

 static final String STUDENTS_TABLE_NAME = "students";

 static final int DATABASE_VERSION = 1;

 static final String CREATE_DB_TABLE =

 " CREATE TABLE " + STUDENTS_TABLE_NAME +

 " (_id INTEGER PRIMARY KEY AUTOINCREMENT, " +

 " name TEXT NOT NULL, " +

 " grade TEXT NOT NULL);";

 /**

 * Helper class that actually creates and manages

 * the provider's underlying data repository.

 */

 private static class DatabaseHelper extends SQLiteOpenHelper {

 DatabaseHelper(Context context){

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db)

 {

 db.execSQL(CREATE_DB_TABLE);

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion,

 int newVersion) {

 db.execSQL("DROP TABLE IF EXISTS " + STUDENTS_TABLE_NAME);

 onCreate(db);

Android

65

 }

 }

 @Override

 public boolean onCreate() {

 Context context = getContext();

 DatabaseHelper dbHelper = new DatabaseHelper(context);

 /**

 * Create a write able database which will trigger its

 * creation if it doesn't already exist.

 */

 db = dbHelper.getWritableDatabase();

 return (db == null)? false:true;

 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {

 /**

 * Add a new student record

 */

 long rowID = db.insert(STUDENTS_TABLE_NAME, "", values);

 /**

 * If record is added successfully

 */

 if (rowID > 0)

 {

 Uri _uri = ContentUris.withAppendedId(CONTENT_URI, rowID);

 getContext().getContentResolver().notifyChange(_uri, null);

 return _uri;

 }

 throw new SQLException("Failed to add a record into " + uri);

 }

 @Override

Android

66

 public Cursor query(Uri uri, String[] projection, String selection,

 String[] selectionArgs, String sortOrder) {

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 qb.setTables(STUDENTS_TABLE_NAME);

 switch (uriMatcher.match(uri)) {

 case STUDENTS:

 qb.setProjectionMap(STUDENTS_PROJECTION_MAP);

 break;

 case STUDENT_ID:

 qb.appendWhere(_ID + "=" + uri.getPathSegments().get(1));

 break;

 default:

 throw new IllegalArgumentException("Unknown URI " + uri);

 }

 if (sortOrder == null || sortOrder == ""){

 /**

 * By default sort on student names

 */

 sortOrder = NAME;

 }

 Cursor c = qb.query(db, projection, selection, selectionArgs,

 null, null, sortOrder);

 /**

 * register to watch a content URI for changes

 */

 c.setNotificationUri(getContext().getContentResolver(), uri);

 return c;

 }

 @Override

 public int delete(Uri uri, String selection, String[] selectionArgs) {

Android

67

 int count = 0;

 switch (uriMatcher.match(uri)){

 case STUDENTS:

 count = db.delete(STUDENTS_TABLE_NAME, selection,

 selectionArgs);

 break;

 case STUDENT_ID:

 String id = uri.getPathSegments().get(1);

 count = db.delete(STUDENTS_TABLE_NAME, _ID + " = " + id +

 (!TextUtils.isEmpty(selection) ? " AND (" +

 selection + ')' : ""), selectionArgs);

 break;

 default:

 throw new IllegalArgumentException("Unknown URI " + uri);

 }

 getContext().getContentResolver().notifyChange(uri, null);

 return count;

 }

 @Override

 public int update(Uri uri, ContentValues values, String selection,

 String[] selectionArgs) {

 int count = 0;

 switch (uriMatcher.match(uri)){

 case STUDENTS:

 count = db.update(STUDENTS_TABLE_NAME, values,

 selection, selectionArgs);

 break;

 case STUDENT_ID:

 count = db.update(STUDENTS_TABLE_NAME, values, _ID +

 " = " + uri.getPathSegments().get(1) +

Android

68

 (!TextUtils.isEmpty(selection) ? " AND (" +

 selection + ')' : ""), selectionArgs);

 break;

 default:

 throw new IllegalArgumentException("Unknown URI " + uri);

 }

 getContext().getContentResolver().notifyChange(uri, null);

 return count;

 }

 @Override

 public String getType(Uri uri) {

 switch (uriMatcher.match(uri)){

 /**

 * Get all student records

 */

 case STUDENTS:

 return "vnd.android.cursor.dir/vnd.example.students";

 /**

 * Get a particular student

 */

 case STUDENT_ID:

 return "vnd.android.cursor.item/vnd.example.students";

 default:

 throw new IllegalArgumentException("Unsupported URI: " + uri);

 }

 }

}

Following will be the modified content of AndroidManifest.xml file. Here we have

added <provider.../> tag to include our content provider:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.mycontentprovider"

Android

69

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.mycontentprovider.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

/>

 </intent-filter>

 </activity>

 <provider android:name="StudentsProvider"

 android:authorities="com.example.provider.College">

 </provider>

 </application>

</manifest>

Following will be the content of res/layout/activity_main.xml file to include a

button to broadcast your custom intent:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

Android

70

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Name" />

 <EditText

 android:id="@+id/txtName"

 android:layout_height="wrap_content"

 android:layout_width="fill_parent" />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Grade" />

 <EditText

 android:id="@+id/txtGrade"

 android:layout_height="wrap_content"

 android:layout_width="fill_parent" />

 <Button

 android:text="Add Name"

 android:id="@+id/btnAdd"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:onClick="onClickAddName" />

 <Button

 android:text="Retrieve Students"

 android:id="@+id/btnRetrieve"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:onClick="onClickRetrieveStudents" />

</LinearLayout>

Make sure you have following content of res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">MyContentProvider</string>

Android

71

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

</resources>;

Let's try to run our modified MyContentProvider application we just created.

We assume, you had created your AVD while doing environment setup. To run

the app from Eclipse, open one of your project's activity files and click

Run icon from the toolbar. Eclipse installs the app on your AVD and starts it

and if everything is fine with your setup and application, it will display following

Emulator window, be patience because it may take some time based on your

computer speed:

Now let's enter student Name and Grade and finally click on Add Name button,

this will add student record in the database and will flash a message at the

bottom showing ContentProvider URI along with record number added in the

database. This operation makes use of our insert() method. Let's repeat this

process to add few more students in the database of our content provider.

Android

72

Once you are done with adding records in the database, now its time to ask

ContentProvider to give us those records back, so let's click Retrieve

Students button which will fetch and display all the records one by one which is

as per our implementation of our query() method.

Android

73

You can write activities against update and delete operations by providing

callback functions in MainActivity.java file and then modify user interface to

have buttons for update and deleted operations in the same way as we have

done for add and read operations.

This way you can use existing Content Provider like Address Book or you can use

Content Provider concept in developing nice database oriented applications

where you can perform all sort of database operations like read, write, update

and delete as explained above in the example.

Android

74

A Fragment is a piece of an application's user interface or behavior that can be

placed in an Activity which enable more modular activity design. It will not be

wrong if we say, a fragment is a kind of sub-activity. Following are the

important points about fragment:

 A fragment has its own layout and its own behavior with its own lifecycle

callbacks.

 You can add or remove fragments in an activity while the activity is

running.

 You can combine multiple fragments in a single activity to build a multi-

pane UI.

 A fragment can be used in multiple activities.

 Fragment life cycle is closely related to the lifecycle of its host activity

which means when the activity is paused, all the fragments available in

the activity will also be stopped.

 A fragment can implement a behavior that has no user interface

component.

 Fragments were added to the Android API in Honeycomb version of

Android which has API version 11.

You create fragments by extending Fragment class and you can insert a

fragment into your activity layout by declaring the fragment in the activity's

layout file, as a <fragment> element.

Prior to fragment introduction, we had a limitation because we can show only a

single activity on the screen at one given point in time. So we were not able to

divide device screen and control different parts separately. But with the

introduction of fragment we got more flexibility and removed the limitation of

having a single activity on the screen at a time. Now we can have a single

activity but each activity can comprise of multiple fragments which will have

their own layout, events and complete lifecycle.

Following is a typical example of how two UI modules defined by fragments can

be combined into one activity for a tablet design, but separated for a handset

design.

11. FRAGMENTS

Android

75

The application can embed two fragments in Activity A, when running on a

tablet-sized device. However, on a handset-sized screen, there's not enough

room for both fragments, so Activity A includes only the fragment for the list of

articles, and when the user selects an article, it starts Activity B, which includes

the second fragment to read the article.

Fragment Life Cycle

Android fragments have their own life cycle very similar to an android activity.

This section briefs different stages of its life cycle.

Android

76

Phase I: When a fragment gets

created, it goes through the following

states:

onAttach()

onCreate()

onCreateView()

onActivityCreated()

Phase II: When the fragment

becomes visible, it goes through these

states:

onStart()

onResume()

Phase III: When the fragment goes

into the background mode, it goes

through these states:

onPaused()

onStop()

Phase IV: When the fragment is

destroyed, it goes through the

following states:

onPaused()

onStop()

onDestroyView()

onDestroy()

onDetach()

How to use Fragments?

This involves number of simple steps to create Fragments.

 First of all decide how many fragments you want to use in an activity. For

example, we want to use two fragments to handle landscape and portrait

modes of the device.

 Next, based on number of fragments, create classes which will extend the

Fragment class. The Fragment class has above mentioned callback

functions. You can override any of the functions based on your

requirements.

Android

77

 Corresponding to each fragment, you will need to create layout files in

XML file. These files will have layout for the defined fragments.

 Finally modify activity file to define the actual logic of replacing fragments

based on your requirement.

Here is the list of important methods which you can override in your fragment

class:

 onCreate() The system calls this when creating the fragment. You should

initialize essential components of the fragment that you want to retain

when the fragment is paused or stopped, then resumed.

 onCreateView() The system calls this callback when it's time for the

fragment to draw its user interface for the first time. To draw a UI for

your fragment, you must return a View component from this method that

is the root of your fragment's layout. You can return null if the fragment

does not provide a UI.

 onPause() The system calls this method as the first indication that the

user is leaving the fragment. This is usually where you should commit any

changes that should be persisted beyond the current user session.

Example:

This example will explain you how to create your own Fragments. Here we will

create two fragments and one of them will be used when device is in landscape

mode and another fragment will be used in case of portrait mode. So let's follow the

below mentioned steps similar to what we followed while creating Hello World

Example:

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

MyFragments under a package com.example.myfragments, with blank

Activity.

2 Modify main activity file MainActivity.java as shown below in the code.

Here we will check orientation of the device and accordingly we will

switch between different fragments.

3 Create a two java

files PM_Fragment.java and LM_Fragement.java under the

package com.example.myfragments to define your fragments and

associated methods.

4 Create layout

files res/layout/lm_fragment.xml and res/layout/pm_fragment.xml and

Android

78

define your layouts for both the fragments.

5 Modify the default content of res/layout/activity_main.xml file to include

both the fragments.

6 Define required constants in res/values/strings.xml file.

7 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.mycontentprovider/MainActivity.java:

package com.example.myfragments;

import android.os.Bundle;

import android.app.Activity;

import android.app.FragmentManager;

import android.app.FragmentTransaction;

import android.content.res.Configuration;

import android.view.WindowManager;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Configuration config = getResources().getConfiguration();

 FragmentManager fragmentManager = getFragmentManager();

 FragmentTransaction fragmentTransaction =

 fragmentManager.beginTransaction();

 /**

Android

79

 * Check the device orientation and act accordingly

 */

 if (config.orientation == Configuration.ORIENTATION_LANDSCAPE) {

 /**

 * Landscape mode of the device

 */

 LM_Fragment ls_fragment = new LM_Fragment();

 fragmentTransaction.replace(android.R.id.content, ls_fragment);

 }else{

 /**

 * Portrait mode of the device

 */

 PM_Fragment pm_fragment = new PM_Fragment();

 fragmentTransaction.replace(android.R.id.content, pm_fragment);

 }

 fragmentTransaction.commit();

 }

}

Create two fragment files LM_Fragement.java and PM_Fragment.java under

com.example.mycontentprovider package.

Following is the content of LM_Fragement.java file:

package com.example.myfragments;

import android.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class LM_Fragment extends Fragment{

 @Override

Android

80

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {

 /**

 * Inflate the layout for this fragment

 */

 return inflater.inflate(

 R.layout.lm_fragment, container, false);

 }

}

Following is the content of PM_Fragement.java file:

package com.example.myfragments;

import android.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class PM_Fragment extends Fragment{

 @Override

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {

 /**

 * Inflate the layout for this fragment

 */

 return inflater.inflate(

 R.layout.pm_fragment, container, false);

 }

}

Create two layout

files: lm_fragement.xml and pm_fragment.xml under res/layoutdirectory.

Android

81

Following is the content of lm_fragement.xml file:

<?xml version="1.0" encoding="utf-8"?>

 <LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:background="#7bae16">

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/landscape_message"

 android:textColor="#000000"

 android:textSize="20px" />

<!-- More GUI components go here -->

</LinearLayout>

Following is the content of pm_fragment.xml file:

<?xml version="1.0" encoding="utf-8"?>

 <LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:background="#666666">

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/portrait_message"

 android:textColor="#000000"

Android

82

 android:textSize="20px" />

<!-- More GUI components go here -->

</LinearLayout>

Following will be the content of res/layout/activity_main.xml file which

includes your fragments:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="horizontal">

 <fragment

 android:name="com.example.fragments"

 android:id="@+id/lm_fragment"

 android:layout_weight="1"

 android:layout_width="0dp"

 android:layout_height="match_parent" />

 <fragment

 android:name="com.example.fragments"

 android:id="@+id/pm_fragment"

 android:layout_weight="2"

 android:layout_width="0dp"

 android:layout_height="match_parent" />

</LinearLayout>

Make sure you have following content of res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

Android

83

 <string name="app_name">MyFragments</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="landscape_message">This is Landscape mode fragment

 </string>

 <string name="portrait_message">This is Portrait mode fragment

 </string>

</resources>

Let's try to run our modified MyFragments application we just created. We

assume, you had created your AVD while doing environment setup. To run the

app from Eclipse, open one of your project's activity files and click Run icon

from the toolbar. Eclipse installs the app on your AVD and starts it and if

everything is fine with your setup and application, it will display Emulator

window where you will click on Menu button to see the following window. Be

patience because it may take some time based on your computer speed:

To change the mode of the emulator screen, let's do the following:

 fn+control+F11 on Mac to change the landscape to portrait and vice

versa.

 ctrl+F11 on Windows.

Android

84

 ctrl+F11 on Linux.

Once you changed the mode, you will be able to see the GUI which you have

implemented for landscape mode as below:

This way you can use same activity but different GUIs through different

fragments. You can use different type of GUI components for different GUIs

based on your requirements.

Android

85

An Android Intent is an object carrying an intent i.e. message from one

component to another component within the application or outside the

application. The intents can communicate messages among any of the three

core components of an application - activities, services, and broadcast receivers.

The intent itself, an Intent object, is a passive data structure holding an abstract

description of an operation to be performed.

For example, let's assume, that you have an Activity that needs to launch an

email client and sends an email using your Android device. For this purpose,

your Activity would send an ACTION_SEND along with appropriate chooser, to

the Android Intent Resolver. The specified chooser gives the proper interface for

the user to pick how to send your email data.

For example, assume, that you have an Activity that needs to open URL in a web

browser on your Android device. For this purpose, your Activity will send

ACTION_WEB_SEARCH Intent to the Android Intent Resolver to open given URL

in the web browser. The Intent Resolver parses through a list of Activities and

chooses the one that would best match your Intent, in this case, the Web

Browser Activity. The Intent Resolver then passes your web page to the web

browser and starts the Web Browser Activity.

There are separate mechanisms for delivering intents to each type of component

- activities, services, and broadcast receivers.

S.N. Method & Description

1 Context.startActivity()

The Intent object is passed to this method to launch a new activity or

to get an existing activity to do something new.

2 Context.startService()

The Intent object is passed to this method to initiate a service or

deliver new instructions to an ongoing service.

3 Context.sendBroadcast()

The Intent object is passed to this method to deliver the message to

all interested broadcast receivers.

12. INTENTS & FILTERS

Android

86

Intent Objects

An Intent object is a bundle of information which is used by the component that

receives the intent plus information used by the Android system.

An Intent object can contain the following components based on what it is

communicating or going to perform:

Action

This is mandatory part of the Intent object and is a string naming the action to

be performed or, in the case of broadcast intents, the action that took place and

is being reported. The action largely determines how the rest of the intent object

is structured. The Intent class defines a number of action constants

corresponding to different intents. Here is a list of Android Intent Standard Actions

The action in an Intent object can be set by the setAction() method and read by

getAction().

Data

The URI of the data to be acted on and the MIME type of that data. For example,

if the action field is ACTION_EDIT, the data field would contain the URI of the

document to be displayed for editing.

The setData() method specifies data only as a URI, setType() specifies it only as

a MIME type, and setDataAndType() specifies it as both a URI and a MIME type.

The URI is read by getData() and the type by getType().

Some examples of action/data pairs are:

S.N. Action/Data Pair & Description

1 ACTION_VIEW content://contacts/people/1

Display information about the person whose identifier is "1".

2 ACTION_DIAL content://contacts/people/1

Display the phone dialer with the person filled in.

3 ACTION_VIEW tel:123

Display the phone dialer with the given number filled in.

4 ACTION_DIAL tel:123

Display the phone dialer with the given number filled in.

http://localhost/android/android_intent_standard_actions.htm

Android

87

5 ACTION_EDIT content://contacts/people/1

Edit information about the person whose identifier is "1".

6 ACTION_VIEW content://contacts/people/

Display a list of people, which the user can browse through.

Category

The category is an optional part of Intent object and it's a string containing

additional information about the kind of component that should handle the

intent. The addCategory() method places a category in an Intent object,

removeCategory() deletes a category previously added, and getCategories()

gets the set of all categories currently in the object. Here is a list of Android Intent

Standard Categories.

You can check detail on Intent Filters in below section to understand how do we

use categories to choose appropriate activity corresponding to an Intent.

Extras

This will be in key-value pairs for additional information that should be delivered

to the component handling the intent. The extras can be set and read using the

putExtras() and getExtras() methods respectively. Here is a list of Android Intent

Standard Extra Data

Flags

These flags are optional part of Intent object and instruct the Android system

how to launch an activity, and how to treat it after it is launched etc.

Component Name

This optional field is an android ComponentName object representing either

Activity, Service or BroadcastReceiver class. If it is set, the Intent object is

delivered to an instance of the designated class, otherwise Android uses other

information in the Intent object to locate a suitable target.

The component name is set by setComponent(), setClass(), or setClassName()

and read by getComponent().

Types of Intents

There are following two types of intents supported by Android till version 4.1

http://localhost/android/android_intent_standard_categories.htm
http://localhost/android/android_intent_standard_categories.htm
http://localhost/android/android_intent_standard_extra_data.htm
http://localhost/android/android_intent_standard_extra_data.htm

Android

88

Explicit Intents

These intents designate the target component by its name and they are typically

used for application-internal messages - such as an activity starting a

subordinate service or launching a sister activity. For example:

// Explicit Intent by specifying its class name

Intent i = new Intent(this, TargetActivity.class);

i.putExtra("Key1", "ABC");

i.putExtra("Key2", "123");

// Starts TargetActivity

startActivity(i);

Implicit Intents

These intents do not name a target and the field for the component name is left

blank. Implicit intents are often used to activate components in other

applications. For example:

// Implicit Intent by specifying a URI

Intent i = new Intent(Intent.ACTION_VIEW,

Uri.parse("http://www.example.com"));

// Starts Implicit Activity

startActivity(i);

The target component which receives the intent can use

the getExtras() method to get the extra data sent by the source component.

For example:

// Get bundle object at appropriate place in your code

Bundle extras = getIntent().getExtras();

// Extract data using passed keys

String value1 = extras.getString("Key1");

String value2 = extras.getString("Key2");

Example:

Android

89

Following example shows the functionality of an Android Intent to launch various

Android built-in applications.

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

IntentDemo under a package com.example.intentdemo. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add the code to define two listeners

corresponding two buttons i.e. Start Browser and Start Phone.

3 Modify layout XML file res/layout/activity_main.xml to add three buttons

in linear layout.

4 Modify res/values/strings.xml to define required constant values.

5 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.intentdemo/MainActivity.java.

package com.example.intentdemo;

import android.net.Uri;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

Android

90

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button startBrowser = (Button) findViewById(R.id.start_browser);

 startBrowser.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 Intent i = new Intent(android.content.Intent.ACTION_VIEW,

 Uri.parse("http://www.example.com"));

 startActivity(i);

 }

 });

 Button startPhone = (Button) findViewById(R.id.start_phone);

 startPhone.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 Intent i = new Intent(android.content.Intent.ACTION_VIEW,

 Uri.parse("tel:9510300000"));

 startActivity(i);

 }

 });

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action

 // bar if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

Android

91

 android:orientation="vertical" >

 <Button android:id="@+id/start_browser"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/start_browser"/>

 <Button android:id="@+id/start_phone"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/start_phone" />

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">IntentDemo</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="start_browser">Start Browser</string>

 <string name="start_phone">Start Phone</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.intentdemo"

 android:versionCode="1"

 android:versionName="1.0" >

Android

92

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.intentdemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your IntentDemo application. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one

of your project's activity files and click Run icon from the toolbar. Eclipse

installs the app on your AVD and starts it and if everything is fine with your

setup and application, it will display following Emulator window:

Android

93

Now click on Start Browser button, which will start a browser configured and

display http://www.example.com as shown below:

Similarly, you can launch phone interface using Start Phone button, which will

allow you to dial already given phone number.

Intent Filters

You have seen how an Intent has been used to call another activity. Android OS

uses filters to pinpoint the set of Activities, Services, and Broadcast receivers

that can handle the Intent with help of specified set of action, categories, data

scheme associated with an Intent. You will use <intent-filter> element in the

manifest file to list down actions, categories and data types associated with any

activity, service, or broadcast receiver.

Android

94

Following is an example of a part of AndroidManifest.xml file to specify an

activity com.example.intentdemo.CustomActivity which can be invoked by

either of the two mentioned actions, one category, and one data:

<activity android:name=".CustomActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <action android:name="com.example.intentdemo.LAUNCH" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="http" />

 </intent-filter>

</activity>

Once this activity is defined along with above mentioned filters, other activities

will be able to invoke this activity using either

the android.intent.action.VIEW, or using the

com.example.intentdemo.LAUNCH action provided their category is

android.intent.category.DEFAULT.

The <data> element specifies the data type expected by the activity to be called

and for above example our custom activity expects the data to start with the

"http://".

There may be a situation that an intent can pass through the filters of more than

one activity or service, the user may be asked which component to activate. An

exception is raised if no target can be found.

There are following test Android checks before invoking an activity:

 A filter <intent-filter> may list more than one action as shown above but

this list cannot be empty; a filter must contain at least one <action>

element, otherwise it will block all intents. If more than one actions are

mentioned then Android tries to match one of the mentioned actions

before invoking the activity.

 A filter <intent-filter> may list zero, one or more than one categories. If

there is no category mentioned then android always pass this test but if

more than one categories are mentioned then for an intent to pass the

category test, every category in the Intent object must match a category

in the filter.

 Each <data> element can specify a URI and a data type (MIME media

type). There are separate attributes like scheme, host, port,

and path for each part of the URI. An Intent object that contains both a

URI and a data type passes the data type part of the test only if its type

matches a type listed in the filter.

Android

95

Example:

Following example is a modification of the above example. Here we will see how

Android resolves conflict if one intent is invoking two activities defined in, next how

to invoke a custom activity using a filter and third one is an exception case if

Android does not file appropriate activity defined for an intent.

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

IntentDemo under a package com.example.intentdemo. While creating

this project, make sure your Target SDK and Compile With are at the

latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add the code to define three

listeners corresponding to three buttons defined in layout file.

3 Add a new src/CustomActivity.java file to have one custom activity

which will be invoked by different intents.

4 Modify layout XML file res/layout/activity_main.xml to add three buttons

in linear layout.

5 Add one layout XML file res/layout/custom_view.xml to add a simple

<TextView> to show the passed data through intent.

6 Modify res/values/strings.xml to define required constant values.

7 Modify AndroidManifest.xml to add <intent-filter> to define rules for

your intent to invoke custom activity.

8 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.intentdemo/MainActivity.java.

package com.example.intentdemo;

import android.net.Uri;

import android.os.Bundle;

Android

96

import android.app.Activity;

import android.content.Intent;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // First intent to use ACTION_VIEW action with correct data

 Button startBrowser_a = (Button)

 findViewById(R.id.start_browser_a);

 startBrowser_a.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 Intent i = new Intent(android.content.Intent.ACTION_VIEW,

 Uri.parse("http://www.example.com"));

 startActivity(i);

 }

 });

 // Second intent to use LAUNCH action with correct data

 Button startBrowser_b = (Button)

 findViewById(R.id.start_browser_b);

 startBrowser_b.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 Intent i = new Intent("com.example.intentdemo.LAUNCH",

 Uri.parse("http://www.example.com"));

 startActivity(i);

 }

 });

Android

97

 // Third intent to use LAUNCH action with incorrect data

 Button startBrowser_c = (Button)

 findViewById(R.id.start_browser_c);

 startBrowser_c.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 Intent i = new Intent("com.example.intentdemo.LAUNCH",

 Uri.parse("https://www.example.com"));

 startActivity(i);

 }

 });

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the

 // action bar if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the content of the modified main activity file

src/com.example.intentdemo/CustomActivity.java.

package com.example.intentdemo;

import android.app.Activity;

import android.net.Uri;

import android.os.Bundle;

import android.widget.TextView;

public class CustomActivity extends Activity {

Android

98

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.custom_view);

 TextView label = (TextView) findViewById(R.id.show_data);

 Uri url = getIntent().getData();

 label.setText(url.toString());

 }

}

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button android:id="@+id/start_browser_a"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/start_browser_a"/>

 <Button android:id="@+id/start_browser_b"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/start_browser_b"/>

 <Button android:id="@+id/start_browser_c"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/start_browser_c"/>

Android

99

</LinearLayout>

Following will be the content of res/layout/custom_view.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 <TextView android:id="@+id/show_data"

 android:layout_width="fill_parent"

 android:layout_height="400dp"/>

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">IntentDemo</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="start_browser_a">Start Browser with VIEW

 action</string>

 <string name="start_browser_b">Start Browser with LAUNCH

 action</string>

 <string name="start_browser_c">Exception Condition</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.intentdemo"

Android

100

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.intentdemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 <activity android:name="com.example.intentdemo.CustomActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <action android:name="com.example.intentdemo.LAUNCH" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="http" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

101

Let's try to run your IntentDemo application. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one

of your project's activity files and click Run icon from the toolbar. Eclipse

installs the app on your AVD and starts it and if everything is fine with your

setup and application, it will display following Emulator window:

Now let's start with first button "Start Browser with VIEW Action". Here we have

defined our custom activity with a filter "android.intent.action.VIEW", and there

is already one default activity against VIEW action defined by Android which is

launching web browser. So android displays following two options to select the

activity you want to launch.

Android

102

Now if you select Browser, then Android will launch web browser and open

example.com website but if you select IndentDemo option then Android will

launch CustomActivity which does nothing but just capture passed data and

displays in a text view as follows:

Android

103

Now go back using back button and click on "Start Browser with LAUNCH Action"

button, here Android applies filter to choose define activity and it simply launch

your custom activity and again it displays following screen:

Again, go back using back button and click on "Exception Condition" button, here

Android tries to find out a valid filter for the given intent but it does not find a

valid activity defined because this time we have used data as https instead

of http though we are giving a correct action, so Android raises an exception and

shows following screen:

Android

104

The basic building block for user interface is a View object which is created from

the View class and occupies a rectangular area on the screen and is responsible

for drawing and event handling. View is the base class for widgets, which are

used to create interactive UI components like buttons, text fields, etc.

The ViewGroup is a subclass of View and provides invisible container that hold

other Views or other ViewGroups and define their layout properties.

At third level we have different layouts which are subclasses of ViewGroup class

and a typical layout defines the visual structure for an Android user interface and

can be created either at run time using View/ViewGroup objects or you can

declare your layout using simple XML file main_layout.xml which is located in

the res/layout folder of your project.

This tutorial is more about creating your GUI based on layouts defined in XML

file. A layout may contain any type of widgets such as buttons, labels,

textboxes, and so on. Following is a simple example of XML file having

LinearLayout:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a Button" />

 <!-- More GUI components go here -->

</LinearLayout>

13. UI LAYOUTS

Android

105

Once your layout is defined, you can load the layout resource from your

application code, in your Activity.onCreate() callback implementation as shown

below:

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

Android Layout Types

There are number of Layouts provided by Android which you will use in almost

all the Android applications to provide different view, look and feel.

S.N. Layout & Description

1 Linear Layout

LinearLayout is a view group that aligns all children in a single direction,

vertically or horizontally.

2 Relative Layout

RelativeLayout is a view group that displays child views in relative

positions.

3 Table Layout

TableLayout is a view that groups views into rows and columns.

4 Absolute Layout

AbsoluteLayout enables you to specify the exact location of its children.

5 Frame Layout

The FrameLayout is a placeholder on screen that you can use to display

a single view.

6 List View

ListView is a view group that displays a list of scrollable items.

7 Grid View

GridView is a ViewGroup that displays items in a two-dimensional,

scrollable grid.

http://localhost/android/android_linear_layout.htm
http://localhost/android/android_relative_layout.htm
http://localhost/android/android_table_layout.htm
http://localhost/android/android_absolute_layout.htm
http://localhost/android/android_frame_layout.htm
http://localhost/android/android_list_view.htm
http://localhost/android/android_grid_view.htm

Android

106

Layout Attributes

Each layout has a set of attributes which define the visual properties of that

layout. There are few common attributes among all the layouts and there are

other attributes which are specific to that layout. Following are common

attributes and will be applied to all the layouts:

Attribute Description

android:id This is the ID which uniquely identifies the

view.

android:layout_width This is the width of the layout.

android:layout_height This is the height of the layout

android:layout_marginTop This is the extra space on the top side of the

layout.

android:layout_marginBottom This is the extra space on the bottom side of

the layout.

android:layout_marginLeft This is the extra space on the left side of the

layout.

android:layout_marginRight This is the extra space on the right side of the

layout.

android:layout_gravity This specifies how child Views are positioned.

android:layout_weight This specifies how much of the extra space in

the layout should be allocated to the View.

android:layout_x This specifies the x-coordinate of the layout.

android:layout_y This specifies the y-coordinate of the layout.

android:layout_width This is the width of the layout.

android:layout_width This is the width of the layout.

Android

107

android:paddingLeft This is the left padding filled for the layout.

android:paddingRight This is the right padding filled for the layout.

android:paddingTop This is the top padding filled for the layout.

android:paddingBottom This is the bottom padding filled for the layout.

Here width and height are the dimension of the layout/view which can be

specified in terms of dp (Density-independent Pixels), sp (Scale-independent

Pixels), pt (Points which is 1/72 of an inch), px (Pixels), mm (Millimeters) and

finally in (inches).

You can specify width and height with exact measurements but more often, you

will use one of these constants to set the width or height:

 android:layout_width=wrap_content tells your view to size itself to

the dimensions required by its content.

 android:layout_width=fill_parent tells your view to become as big as

its parent view.

Gravity attribute plays important role in positioning the view object and it can

take one or more (separated by '|') of the following constant values.

Constant Value Description

top 0x30 Push object to the top of its container, not

changing its size.

bottom 0x50 Push object to the bottom of its container,

not changing its size.

left 0x03 Push object to the left of its container, not

changing its size.

right 0x05 Push object to the right of its container, not

changing its size.

center_vertical 0x10 Place object in the vertical center of its

container, not changing its size.

fill_vertical 0x70 Grow the vertical size of the object if needed

so it completely fills its container.

Android

108

center_horizontal 0x01 Place object in the horizontal center of its

container, not changing its size.

fill_horizontal 0x07 Grow the horizontal size of the object if

needed so it completely fills its container.

center 0x11 Place the object in the center of its container

in both the vertical and horizontal axis, not

changing its size.

fill 0x77 Grow the horizontal and vertical size of the

object if needed so it completely fills its

container.

clip_vertical 0x80 Additional option that can be set to have the

top and/or bottom edges of the child clipped

to its container's bounds. The clip will be

based on the vertical gravity: a top gravity

will clip the bottom edge, a bottom gravity

will clip the top edge, and neither will clip

both edges.

clip_horizontal 0x08 Additional option that can be set to have the

left and/or right edges of the child clipped to

its container's bounds. The clip will be based

on the horizontal gravity: a left gravity will

clip the right edge, a right gravity will clip

the left edge, and neither will clip both

edges.

start 0x00800003 Push object to the beginning of its container,

not changing its size.

end 0x00800005 Push object to the end of its container, not

changing its size.

View Identification

A view object may have a unique ID assigned to it which will identify the View

uniquely within the tree. The syntax for an ID, inside an XML tag is:

android:id="@+id/my_button"

Android

109

Following is a brief description of @ and + signs:

 The at-symbol (@) at the beginning of the string indicates that the XML

parser should parse and expand the rest of the ID string and identify it as

an ID resource.

 The plus-symbol (+) means that this is a new resource name that must

be created and added to our resources. To create an instance of the view

object and capture it from the layout, use the following:

Button myButton = (Button) findViewById(R.id.my_button);

Android

110

An Android application user interface is everything that the user can see and

interact with. You have learned about the various layouts that you can use to

position your views in an activity. This chapter will give you detail on various

views.

A View is an object that draws something on the screen that the user can

interact with and a ViewGroup is an object that holds other View (and

ViewGroup) objects in order to define the layout of the user interface.

You define your layout in an XML file which offers a human-readable structure

for the layout, similar to HTML. For example, a simple vertical layout with a text

view and a button looks like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a Button" />

</LinearLayout>

Android UI Controls

There are number of UI controls provided by Android that allows you to build the

graphical user interface for your app.

S.N. UI Control & Description

14. UI CONTROLS

Android

111

1 TextView

This control is used to display text to the user.

2 EditText

EditText is a pre-defined subclass of TextView that includes rich editing

capabilities.

3 AutoCompleteTextView

The AutoCompleteTextView is a view that is similar to EditText, except

that it shows a list of completion suggestions automatically while the

user is typing.

4 Button

A push-button that can be pressed, or clicked, by the user to perform an

action.

5 ImageButton

AbsoluteLayout enables you to specify the exact location of its children.

6 CheckBox

An on/off switch that can be toggled by the user. You should use

checkboxes when presenting users with a group of selectable options

that are not mutually exclusive.

7 ToggleButton

An on/off button with a light indicator.

8 RadioButton

The RadioButton has two states: either checked or unchecked.

9 RadioGroup

A RadioGroup is used to group together one or more RadioButtons.

10 ProgressBar

The ProgressBar view provides visual feedback about some ongoing

tasks, such as when you are performing a task in the background.

http://localhost/android/android_textview_control.htm
http://localhost/android/android_edittext_control.htm
http://localhost/android/android_autocompletetextview_control.htm
http://localhost/android/android_button_control.htm
http://localhost/android/android_imagebutton_control.htm
http://localhost/android/android_checkbox_control.htm
http://localhost/android/android_togglebutton_control.htm
http://localhost/android/android_radiobutton_control.htm
http://localhost/android/android_radiogroup_control.htm
http://localhost/android/android_progressbar.htm

Android

112

11 Spinner

A drop-down list that allows users to select one value from a set.

12 TimePicker

The TimePicker view enable users to select a time of the day, in either

24-hour mode or AM/PM mode.

13 DatePicker

The DatePicker view enable users to select a date of the day.

Create UI Controls

As explained in previous chapter, a view object may have a unique ID assigned

to it which will identify the View uniquely within the tree. The syntax for an ID,

inside an XML tag is:

android:id="@+id/text_id"

To create a UI Control/View/Widget you will have to define a view/widget in the

layout file and assign it a unique ID as follows:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text_id"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a TextView" />

</LinearLayout>

Then finally create an instance of the Control object and capture it from the

layout, use the following:

TextView myText = (TextView) findViewById(R.id.text_id);

http://localhost/android/android_spinner_control.htm
http://localhost/android/android_timepicker_control.htm
http://localhost/android/android_datepicker_control.htm

Android

113

Events are a useful way to collect data about a user's interaction with interactive

components of your app, like button presses or screen touch etc. The Android

framework maintains an event queue into which events are placed as they occur

and then each event is removed from the queue on a first-in, first-out (FIFO)

basis. You can capture these events in your program and take appropriate action

as per requirements.

There are following three concepts related to Android Event Management:

 Event Listeners: The View class is mainly involved in building up an

Android GUI, same View class provides a number of Event Listeners. The

Event Listener is the object that receives notification when an event

occurs.

 Event Listeners Registration: Event Registration is the process by

which an Event Handler gets registered with an Event Listener so that the

handler is called when the Event Listener fires the event.

 Event Handlers: When an event happens and we have registered and

event listener for the event, the event listener calls the Event Handlers,

which is the method that actually handles the event.

Event Listeners & Event Handlers

Event Handler Event Listener & Description

onClick() OnClickListener()

This is called when the user either clicks or touches or

focuses upon any widget like button, text, image etc. You

will use onClick() event handler to handle such event.

onLongClick() OnLongClickListener()

This is called when the user either clicks or touches or

focuses upon any widget like button, text, image etc. for

one or more seconds. You will use onLongClick() event

handler to handle such event.

onFocusChange() OnFocusChangeListener()

This is called when the widget loses its focus i.e. user

goes away from the view item. You will use

onFocusChange() event handler to handle such event.

15. EVENT HANDLING

Android

114

onKey() OnFocusChangeListener()

This is called when the user is focused on the item and

presses or releases a hardware key on the device. You

will use onKey() event handler to handle such event.

onTouch() OnTouchListener()

This is called when the user presses the key, releases the

key, or any movement gesture on the screen. You will

use onTouch() event handler to handle such event.

onMenuItemClick() OnMenuItemClickListener()

This is called when the user selects a menu item. You will

use onMenuItemClick() event handler to handle such

event.

There are many more event listeners available as a part of View class like

OnHoverListener, OnDragListener etc., which may be needed for your

application. So we recommend to refer official documentation for Android

application development in case you are going to develop a sophisticated app.

Event Listeners Registration:

Event Registration is the process by which an Event Handler gets registered with

an Event Listener so that the handler is called when the Event Listener fires the

event. Though there are several tricky ways to register your event listener for

any event, let us list down only top 3 ways, out of which you can use any of

them based on the situation.

 Using an Anonymous Inner Class

 Activity class implements the Listener interface.

 Using Layout file activity_main.xml to specify event handler directly.

Below section will provide you detailed examples on all the three scenarios:

Event Handling Examples

Event Listeners Registration Using an Anonymous Inner Class

Here you will create an anonymous implementation of the listener and will be

useful if each class is applied to a single control only and you have advantage to

pass arguments to event handler. In this approach event handler methods can

access private data of Activity. No reference is needed to call to Activity.

Android

115

But if you have applied the handler to more than one control, you would have to

cut and paste the code for the handler and if the code for the handler is long, it

makes the code harder to maintain.

Following are the simple steps to show how we will make use of separate

Listener class to register and capture click event. Similarly, you can implement

your listener for any other required event type.

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

EventDemo under a package com.example.eventdemo as explained in

the Hello World Example chapter.

2 Modify src/MainActivity.java file to add click event listeners and

handlers for the two buttons defined.

3 Modify the default content of res/layout/activity_main.xml file to include

Android UI controls.

4 Define required constants in res/values/strings.xml file.

5 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.eventdemo/MainActivity.java. This file can include each

of the fundamental life-cycle methods.

package com.example.eventdemo;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends Activity {

Android

116

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 //--- find both the buttons---

 Button sButton = (Button) findViewById(R.id.button_s);

 Button lButton = (Button) findViewById(R.id.button_l);

 // -- register click event with first button ---

 sButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 // --- find the text view --

 TextView txtView = (TextView) findViewById(R.id.text_id);

 // -- change text size --

 txtView.setTextSize(14);

 }

 });

 // -- register click event with second button ---

 lButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 // --- find the text view --

 TextView txtView = (TextView) findViewById(R.id.text_id);

 // -- change text size --

 txtView.setTextSize(24);

 }

 });

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

Android

117

 }

}

Following will be the content of res/layout/activity_main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button

 android:id="@+id/button_s"

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:text="@string/button_small"/>

 <Button

 android:id="@+id/button_l"

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:text="@string/button_large"/>

 <TextView

 android:id="@+id/text_id"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:capitalize="characters"

 android:text="@string/hello_world" />

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

Android

118

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">EventDemo</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="button_small">Small Font</string>

 <string name="button_large">Large Font</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.guidemo"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.guidemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

Android

119

 />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your EventDemo application. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one

of your project's activity files and click Run icon from the toolbar. Eclipse

installs the app on your AVD and starts it and if everything is fine with your

setup and application, it will display following Emulator window:

Now you try to click on two buttons one by one and you will see that font of

the Hello World text will change, which happens because registered click event

handler method is being called against each click event.

Registration Using the Activity Implements Listener Interface

Here your Activity class implements the Listener interface and you put the

handler method in the main Activity and then you call setOnClickListener(this).

This approach is fine if your application has only a single control of that Listener

type otherwise you will have to do further programming to check which control

has generated event. Secondly, you cannot pass arguments to the Listener so,

again, works poorly for multiple controls.

Following are the simple steps to show how we will implement Listener class to

register and capture click event. Similarly, you can implement your listener for

any other required event type.

Android

120

Step Description

1 We do not need to create this application from scratch, so let's make

use of above created Android application EventDemo.

2 Modify src/MainActivity.java file to add click event listeners and

handlers for the two buttons defined.

3 We are not making any change in res/layout/activity_main.xml, it will

remain as shown above.

4 We are also not making any change in res/values/strings.xml file, it will

also remain as shown above.

5 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.eventdemo/MainActivity.java. This file can include each

of the fundamental life-cycle methods.

package com.example.eventdemo;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends Activity implements OnClickListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

Android

121

 //--- find both the buttons---

 Button sButton = (Button) findViewById(R.id.button_s);

 Button lButton = (Button) findViewById(R.id.button_l);

 // -- register click event with first button ---

 sButton.setOnClickListener(this);

 // -- register click event with second button ---

 lButton.setOnClickListener(this);

 }

 //--- Implement the OnClickListener callback

 public void onClick(View v) {

 if(v.getId() == R.id.button_s)

 {

 // --- find the text view --

 TextView txtView = (TextView) findViewById(R.id.text_id);

 // -- change text size --

 txtView.setTextSize(14);

 return;

 }

 if(v.getId() == R.id.button_l)

 {

 // --- find the text view --

 TextView txtView = (TextView) findViewById(R.id.text_id);

 // -- change text size --

 txtView.setTextSize(24);

 return;

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

Android

122

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Now again let's try to run your EventDemo application. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Now you try to click on two buttons one by one and you will see that font of

the Hello World text will change, which happens because registered click event

handler method is being called against each click event.

Registration Using Layout file activity_main.xml

Here you put your event handlers in Activity class without implementing a

Listener interface or call to any listener method. Rather you will use the layout

file (activity_main.xml) to specify the handler method via

the android:onClick attribute for click event. You can control click events

differently for different control by passing different event handler methods.

The event handler method must have a void return type and take a View as an

argument. However, the method name is arbitrary, and the main class need not

implement any particular interface.

This approach does not allow you to pass arguments to Listener and for the

Android developers it will be difficult to know which method is the handler for

which control, until they look into activity_main.xml file. Secondly, you cannot

handle any other event except click event using this approach.

Android

123

Following are the simple steps to show how we can make use of layout file

Main.xml to register and capture click event.

Step Description

1 We do not need to create this application from scratch, so let's make

use of above created Android application EventDemo.

2 Modify src/MainActivity.java file to add click event listeners and

handlers for the two buttons defined.

3 Modify layout file res/layout/activity_main.xml, to specify event

handlers for the two buttons.

4 We are also not making any change in res/values/strings.xml file, it will

also remain as shown above.

5 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.eventdemo/MainActivity.java. This file can include each

of the fundamental life-cycle methods.

package com.example.eventdemo;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends Activity{

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Android

124

 setContentView(R.layout.activity_main);

 }

 //--- Implement the event handler for the first button.

 public void doSmall(View v) {

 // --- find the text view --

 TextView txtView = (TextView) findViewById(R.id.text_id);

 // -- change text size --

 txtView.setTextSize(14);

 return;

 }

 //--- Implement the event handler for the second button.

 public void doLarge(View v) {

 // --- find the text view --

 TextView txtView = (TextView) findViewById(R.id.text_id);

 // -- change text size --

 txtView.setTextSize(24);

 return;

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following will be the content of res/layout/activity_main.xml file. Here we

have to add android:onClick="methodName" for both the buttons, which will

register given method names as click event handlers.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

Android

125

 android:orientation="vertical" >

 <Button

 android:id="@+id/button_s"

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:text="@string/button_small"

 android:onClick="doSmall"/>

 <Button

 android:id="@+id/button_l"

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:text="@string/button_large"

 android:onClick="doLarge"/>

 <TextView

 android:id="@+id/text_id"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:capitalize="characters"

 android:text="@string/hello_world" />

</LinearLayout>

Again let's try to run your EventDemo application. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one

of your project's activity files and click Run icon from the toolbar. Eclipse

installs the app on your AVD and starts it and if everything is fine with your

setup and application, it will display following Emulator window:

Android

126

Now you try to click on two buttons one by one and you will see that font of

the Hello World text will change, which happens because registered click event

handler method is being called against each click event.

Exercise:

We recommend you to try writing different event handlers for different event

types and understand exact difference in different event types and their

handling. Events related to menu, spinner, pickers widgets are little different but

they are also based on the same concepts as explained above.

Android

127

If you already know about Cascading Style Sheet (CSS) in web design then

understanding Android Style will be easy as it also works in a similar way. There

are number of attributes associated with each Android widget which you can set

to change your application’s look and feel. A style can specify properties such as

height, padding, font color, font size, background color, and much more.

You can specify these attributes in Layout file as follows:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

 android:id="@+id/text_id"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:capitalize="characters"

 android:textColor="#00FF00"

 android:typeface="monospace"

 android:text="@string/hello_world" />

</LinearLayout>

But this way we need to define style attributes for every attribute separately

which is not good for source code maintenance point of view. So we work with

styles by defining them in separate file as explained below.

Defining Styles

A style is defined in an XML resource that is separate from the XML that specifies

the layout. This XML file resides under res/values/ directory of your project

and will have <resources> as the root node which is mandatory for the style

file. The name of the XML file is arbitrary, but it must use the .xml extension.

17. STYLES & THEMES

Android

128

You can define multiple styles per file using <style> tag but each style will have

its name that uniquely identifies the style. Android style attributes are set

using <item> tag as shown below:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <style name="CustomFontStyle">

 <item name="android:layout_width">fill_parent</item>

 <item name="android:layout_height">wrap_content</item>

 <item name="android:capitalize">characters</item>

 <item name="android:typeface">monospace</item>

 <item name="android:textSize">12pt</item>

 <item name="android:textColor">#00FF00</item>/>

 </style>

</resources>

The value for the <item> can be a keyword string, a hex color, a reference to

another resource type, or other value depending on the style property.

Using Styles

Once your style is defined, you can use it in your XML Layout file

using style attribute as follows:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

 android:id="@+id/text_id"

 style="@style/CustomFontStyle"

 android:text="@string/hello_world" />

</LinearLayout>

To understand the concept related to Android Style, you can check Style Demo

Example.

http://localhost/android/android_style_demo_example.htm
http://localhost/android/android_style_demo_example.htm

Android

129

Style Inheritance

Android supports Style Inheritance in very much similar way as cascading style

sheet in web design. You can use this to inherit properties from an existing style

and then define only the properties that you want to change or add.

It is simple to create a new style LargeFont that inherits

the CustomFontStyle style defined above, but make the font size big, you can

author the new style like this:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <style name="CustomFontStyle.LargeFont">

 <item name="android:textSize">20ps</item>

 </style>

</resources>

You can reference this new style as @style/CustomFontStyle.LargeFont in

your XML Layout file. You can continue inheriting like this as many times as

you'd like, by chaining names with periods. For example, you can extend

FontStyle.LargeFont to be Red, with:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <style name="CustomFontStyle.LargeFont.Red">

 <item name="android:textColor">#FF0000</item>/>

 </style>

</resources>

This technique for inheritance by chaining together names only works for styles

defined by your own resources. You can't inherit Android built-in styles this way.

To reference an Android built-in style, such as TextAppearance, you must use

the parent attribute as shown below:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <style name="CustomFontStyle" parent="@android:style/TextAppearance">

 <item name="android:layout_width">fill_parent</item>

 <item name="android:layout_height">wrap_content</item>

 <item name="android:capitalize">characters</item>

 <item name="android:typeface">monospace</item>

Android

130

 <item name="android:textSize">12pt</item>

 <item name="android:textColor">#00FF00</item>/>

 </style>

</resources>

Android Themes

Hope you understood the concept of Style, so now let's try to understand what is

a Theme. A theme is nothing but an Android style applied to an entire Activity

or application, rather than an individual View.

Thus, when a style is applied as a theme, every View in the Activity or

application will apply each style property that it supports. For example, you can

apply the same CustomFontStyle style as a theme for an Activity and then all

text inside that Activity will have green monospace font.

To set a theme for all the activities of your application, open

the AndroidManifest.xml file and edit the <application> tag to include

the android:theme attribute with the style name. For example:

<application android:theme="@style/CustomFontStyle">

But if you want a theme applied to just one Activity in your application, then add

the android:theme attribute to the <activity> tag only. For example:

<activity android:theme="@style/CustomFontStyle">

There are number of default themes defined by Android which you can use

directly or inherit them using parent attribute as follows:

<style name="CustomTheme" parent="android:Theme.Light">

 ...

</style>

To understand the concept related to Android Theme, you can check Theme Demo

Example.

Default Styles & Themes

The Android platform provides a large collection of styles and themes that you

can use in your applications. You can find a reference of all available styles in

the R.style class. To use the styles listed here, replace all underscores in the

style name with a period. For example, you can apply theme_NoTitleBar theme

with "@android:style/Theme.NoTitleBar". You can see the following source code

for Android styles and themes:

http://localhost/android/android_theme_demo_example.htm
http://localhost/android/android_theme_demo_example.htm

Android

131

 Android Styles (styles.xml)

 Android Themes (themes.xml)

Android

132

Android offers a great list of pre-built widgets like Button, TextView, EditText,

ListView, CheckBox, RadioButton, Gallery, Spinner, AutoCompleteTextView etc.

which you can use directly in your Android application development, but there

may be a situation when you are not satisfied with existing functionality of any

of the available widgets. Android provides you with means of creating your own

custom components which you can customize to suit your needs.

If you only need to make small adjustments to an existing widget or layout, you

can simply subclass the widget or layout and override its methods which will

give you precise control over the appearance and function of a screen element.

This tutorial explains you how to create custom Views and use them in your

application using simple and easy steps.

Creating a Simple Custom Component

The simplest way to create your custom component is to extend an existing

widget class or subclass with your own class if you want to extend the

functionality of existing widget like Button, TextView, EditText, ListView,

CheckBox etc. otherwise you can do everything yourself by starting with

the android.view.View class.

At its simplest form you will have to write your constructors corresponding to all

the constructors of the base class. For example if you are going to

extend TextView to create a DateView then following three constructors will be

created for DateView class:

public class DateView extends TextView {

 public DateView(Context context) {

 super(context);

 //--- Additional custom code --

 }

 public DateView(Context context, AttributeSet attrs) {

 super(context, attrs);

 //--- Additional custom code --

 }

 public DateView(Context context, AttributeSet attrs, int defStyle) {

18. CUSTOM COMPONENTS

Android

133

 super(context, attrs, defStyle);

 //--- Additional custom code --

 }

}

Because you have created DateView as child of TextView so it will have access

on all the attributes, methods and events related to TextView and you will be

able to use them without any further implementation. You will implement

additional custom functionality inside your own code as explained in the given

examples below.

If you have requirement for implementing custom drawing/sizing for your

custom widgets then you need to override onMeasure(int

widthMeasureSpec, int heightMeasureSpec) and onDraw(Canvas

canvas) methods. If you are not going to resize or change the shape of your

built-in component then you do not need either of these methods in your custom

component.

The onMeasure() method coordinate with the layout manager to report the

widget's width and height, and you need to call setMeasuredDimension(int width,

int height) from inside this method to report the dimensions.

You can then execute your custom drawing inside the onDraw(Canvas

canvas) method, where android.graphis.Canvas is pretty similar to its

counterpart in Swing, and has methods such as drawRect(), drawLine(),

drawString(), drawBitmap() etc. which you can use to draw your component.

Once you are done with the implementation of a custom component by

extending existing widget, you will be able to instantiate these custom

components in two ways in your application development:

Instantiate using code inside activity class

It is very similar way of instantiating custom component the way you instantiate

built-in widget in your activity class. For example you can use following code to

instantiate above defined custom component:

@Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 DateView dateView = new DateView(this);

 setContentView(dateView);

Android

134

 }

Check this example to understand how to Instantiate a Basic Android Custom

Component using code inside an activity.

Instantiate using Layout XML file

Traditionally you use Layout XML file to instantiate your built-in widgets, same

concept will apply on your custom widgets as well so you will be able to

instantiate your custom component using Layout XML file as explained below.

Here com.example.dateviewdemo is the package where you have put all the

code related to DateView class and DateView is Java class name where you

have put complete logic of your custom component.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <com.example.dateviewdemo.DateView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:textColor="#fff"

 android:textSize="40sp"

 android:background="#000"

 />

</RelativeLayout>

It is important to note here that we are using all TextView attributes along with

custom component without any change. Similarly, you will be able to use all the

events, and methods along with DateView component.

Check this example to understand how to Instantiate a Basic Android Custom

Component using Layout XML file.

http://localhost/android/simple_android_custom_component_using_code.htm
http://localhost/android/simple_android_custom_component_using_code.htm
http://localhost/android/simple_android_custom_component_using_xml.htm
http://localhost/android/simple_android_custom_component_using_xml.htm

Android

135

Custom Component with Custom Attributes

We have seen how we can extend functionality of built-in widgets but in both the

examples given above we saw that extended component can make use of all the

default attributes of its parent class. But consider a situation when you want to

create your own attribute from scratch. Below is a simple procedure to create

and use new attributes for Android Custom components. Consider we want to

introduce three attributes and will use them as shown below:

<com.example.dateviewdemo.DateView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:textColor="#fff"

 android:textSize="40sp"

 custom:delimiter="-"

 custom:fancyText="true"

/>

Step 1

The first step to enable us to use our custom attributes is to define them in a

new xml file under res/values/ and call it attrs.xml. Let's have a look on an

example attrs.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <declare-styleable name="DateView">

 <attr name="delimiter" format="string"/>

 <attr name="fancyText" format="boolean"/>

 </declare-styleable>

</resources>

Here the name=value is what we want to use in our Layout XML file as

attribute, and the format=type is the type of attribute.

Step 2

Your second step will be to read these attributes from Layout XML file and set

them for the component. This logic will go in the constructors that get passed

an AttributeSet, since that is what contains the XML attributes. To read the

values in the XML, you need to first create a TypedArray from the AttributeSet,

then use that to read and set the values as shown in the below example code:

Android

136

TypedArray a = context.obtainStyledAttributes(attrs,

R.styleable.DateView);

final int N = a.getIndexCount();

for (int i = 0; i < N; ++i)

{

 int attr = a.getIndex(i);

 switch (attr)

 {

 case R.styleable.DateView_delimiter:

 String delimiter = a.getString(attr);

 //...do something with delimiter...

 break;

 case R.styleable.DateView_fancyText:

 boolean fancyText = a.getBoolean(attr, false);

 //...do something with fancyText...

 break;

 }

}

a.recycle();

Step 3

Finally you can use your defined attributes in your Layout XML file as follows:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

xmlns:custom="http://schemas.android.com/apk/res/com.example.dateviewdemo

"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

Android

137

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <com.example.dateviewdemo.DateView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:textColor="#fff"

 android:textSize="40sp"

 custom:delimiter="-"

 custom:fancyText="true"

 />

</RelativeLayout>

The important part

isxmlns:custom="http://schemas.android.com/apk/res/com.example.dateviewd

emo". Note that http://schemas.android.com/apk/res/ will remain as is, but last

part will be set to your package name and also that you can use anything after

xmlns:, in this example we have used custom, but you could use any name you

like.

Check this example to understand how to Create Custom Attributes for Android Custom

Component with simple steps.

http://localhost/android/create_custom_attributes_for_custom_component.htm
http://localhost/android/create_custom_attributes_for_custom_component.htm

Android

138

Android drag/drop framework allows your users to move data from one View to

another View in the current layout using a graphical drag and drop gesture. The

framework includes following three important components to support drag &

drop functionality:

 Drag event class:

 Drag listeners:

 Helper methods and classes:

The Drag/Drop Process

There are basically four steps or states in the drag and drop process:

 Started: This event occurs when you start dragging an item in a layout,

your application calls startDrag() method to tell the system to start a

drag. The arguments inside startDrag() method provide the data to be

dragged, metadata for this data, and a callback for drawing the drag

shadow.

 The system first responds by calling back to your application to get a drag

 shadow. It then displays the drag shadow on the device.

 Next, the system sends a drag event with action

 ACTION_DRAG_STARTED to the registered drag event listeners for all the

 View objects in the current layout.

 To continue to receive drag events, including a possible drop event, a

 drag event listener must return true, if the drag event listener returns

 false, then it will not receive drag events for the current operation until

 the system sends a drag event with action type ACTION_DRAG_ENDED.

 Continuing: The user continues the drag. System sends

ACTION_DRAG_ENTERED action followed by ACTION_DRAG_LOCATION

action to the registered drag event listener for the View where dragging

point enters. The listener may choose to alter its View object's appearance

in response to the event or can react by highlighting its View.

 The drag event listener receives an ACTION_DRAG_EXITED action after

 the user has moved the drag shadow outside the bounding box of the

 View.

 Dropped: The user releases the dragged item within the bounding box of

a View. The system sends the View object's listener, a drag event with

action type ACTION_DROP.

19. DRAG & DROP

Android

139

 Ended: Just after the action type ACTION_DROP, the system sends out a

drag event with action type ACTION_DRAG_ENDED to indicate that the

drag operation is over.

The DragEvent Class

The DragEvent represents an event that is sent out by the system at various

times during a drag and drop operation. This class provides few Constants and

important methods which we use during Drag/Drop process.

Constants

Following are all constants integers available as a part of DragEvent class.

S.N. Constants & Description

1 ACTION_DRAG_STARTED

Signals the start of a drag and drop operation.

2 ACTION_DRAG_ENTERED

Signals to a View that the drag point has entered the bounding box of

the View.

3 ACTION_DRAG_LOCATION

Sent to a View after ACTION_DRAG_ENTERED if the drag shadow is still

within the View object's bounding box.

4 ACTION_DRAG_EXITED

Signals that the user has moved the drag shadow outside the bounding

box of the View.

5 ACTION_DROP

Signals to a View that the user has released the drag shadow, and the

drag point is within the bounding box of the View.

6 ACTION_DRAG_ENDED

Signals to a View that the drag and drop operation has concluded.

Android

140

Methods

Following are few important and most frequently used methods available as a

part of DragEvent class.

S.N. Constants & Description

1 int getAction()

Inspect the action value of this event.

2 ClipData getClipData()

Returns the ClipData object sent to the system as part of the call to

startDrag().

3 ClipDescription getClipDescription()

Returns the ClipDescription object contained in the ClipData.

4 boolean getResult()

Returns an indication of the result of the drag and drop operation.

5 float getX()

Gets the X coordinate of the drag point.

6 float getY()

Gets the Y coordinate of the drag point.

7 String toString()

Returns a string representation of this DragEvent object.

Listening for Drag Event

If you want any of your views within a Layout to respond to Drag event then

your view either implements View.OnDragListener or

setup onDragEvent(DragEvent) callback method. When the system calls the

method or listener, it passes to them a DragEvent object explained above. You

can have both a listener and a callback method for View object. If this occurs,

the system first calls the listener and then defined callback as long as listener

returns true.

Android

141

The combination of the onDragEvent(DragEvent) method

and View.OnDragListener is analogous to the combination of

the onTouchEvent() and View.OnTouchListener used with touch events in old

versions of Android.

Starting a Drag Event

You start with creating a ClipData and ClipData.Item for the data being moved.

As part of the ClipData object, supply metadata that is stored in

a ClipDescription object within the ClipData. For a drag and drop operation that

does not represent data movement, you may want to use null instead of an

actual object.

Next either you can extend View.DragShadowBuilder to create a drag

shadow for dragging the view or simply you can

use View.DragShadowBuilder(View) to create a default drag shadow that is the

same size as the View argument passed to it, with the touch point centered in

the drag shadow.

Example:

Following example shows the functionality of a simple Drag & Drop using a

View.setOnLongClickListener() event listener along

with View.OnDragEventListener().

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

DragNDropDemo under a package com.example.dragndropdemo. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add the code to define event

listeners as well as a call back method for the logo image used in the

example.

3 Copy image logo.png in res/drawable-* folder. You can use images with

different resolution in case you want to provide them for different

devices.

4 Modify layout XML file res/layout/activity_main.xml to define default

view of the logo images.

5 Run the application to launch Android emulator and verify the result of

the changes done in the aplication.

Android

142

Following is the content of the modified main activity file

src/com.example.dragndropdemo/MainActivity.java. This file can include

each of the fundamental life-cycle methods.

package com.example.dragndropdemo;

import android.os.Bundle;

import android.app.Activity;

import android.content.ClipData;

import android.content.ClipDescription;

import android.util.Log;

import android.view.DragEvent;

import android.view.View;

import android.view.View.DragShadowBuilder;

import android.view.View.OnDragListener;

import android.widget.*;

public class MainActivity extends Activity{

 ImageView ima;

 private static final String IMAGEVIEW_TAG = "Android Logo";

 String msg;

 private android.widget.RelativeLayout.LayoutParams layoutParams;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 ima = (ImageView)findViewById(R.id.iv_logo);

 // Sets the tag

 ima.setTag(IMAGEVIEW_TAG);

 ima.setOnLongClickListener(new View.OnLongClickListener() {

Android

143

 @Override

 public boolean onLongClick(View v) {

 ClipData.Item item = new

 ClipData.Item((CharSequence)v.getTag());

 String[] mimeTypes = {ClipDescription.MIMETYPE_TEXT_PLAIN};

 ClipData dragData = new ClipData(v.getTag().toString(),

 mimeTypes, item);

 // Instantiates the drag shadow builder.

 View.DragShadowBuilder myShadow = new DragShadowBuilder(ima);

 // Starts the drag

 v.startDrag(dragData, // the data to be dragged

 myShadow, // the drag shadow builder

 null, // no need to use local data

 0 // flags (not currently used, set to 0)

);

 return true;

 }

 });

 // Create and set the drag event listener for the View

 ima.setOnDragListener(new OnDragListener(){

 @Override

 public boolean onDrag(View v, DragEvent event){

 switch(event.getAction())

 {

 case DragEvent.ACTION_DRAG_STARTED:

 layoutParams = (RelativeLayout.LayoutParams)

 v.getLayoutParams();

 Log.d(msg, "Action is DragEvent.ACTION_DRAG_STARTED");

 // Do nothing

 break;

Android

144

 case DragEvent.ACTION_DRAG_ENTERED:

 Log.d(msg, "Action is DragEvent.ACTION_DRAG_ENTERED");

 int x_cord = (int) event.getX();

 int y_cord = (int) event.getY();

 break;

 case DragEvent.ACTION_DRAG_EXITED :

 Log.d(msg, "Action is DragEvent.ACTION_DRAG_EXITED");

 x_cord = (int) event.getX();

 y_cord = (int) event.getY();

 layoutParams.leftMargin = x_cord;

 layoutParams.topMargin = y_cord;

 v.setLayoutParams(layoutParams);

 break;

 case DragEvent.ACTION_DRAG_LOCATION :

 Log.d(msg, "Action is DragEvent.ACTION_DRAG_LOCATION");

 x_cord = (int) event.getX();

 y_cord = (int) event.getY();

 break;

 case DragEvent.ACTION_DRAG_ENDED :

 Log.d(msg, "Action is DragEvent.ACTION_DRAG_ENDED");

 // Do nothing

 break;

 case DragEvent.ACTION_DROP:

 Log.d(msg, "ACTION_DROP event");

 // Do nothing

 break;

 default: break;

 }

 return true;

 }

 });

 }

}

Following will be the content of res/layout/activity_main.xml file:

Android

145

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/container"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <ImageView

 android:id="@+id/iv_logo"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/logo"

 android:contentDescription="@string/drag_drop" />

</RelativeLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">DragNDropDemo</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="drag_drop">Click on the image to drag and drop</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.guidemo"

 android:versionCode="1"

 android:versionName="1.0" >

Android

146

 <uses-sdk

 android:minSdkVersion="16"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.guidemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your DragNDropDemo application. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one

of your project's activity files and click Run icon from the toolbar. Eclipse

installs the app on your AVD and starts it and if everything is fine with your

setup and application, it will display following Emulator window:

Android

147

Now do long click on the displayed android logo and you will see that logo image

moves a little after 1 seconds long click from its place, it is time when you

should start dragging the image. You can drag it around the screen and drop it

at a new location.

Android

148

Android Toast class provides a handy way to show alerts to the users, but these

alerts are not persistent which means alert flashes on the screen for a few

seconds and then disappears.

For important messages to be given to the user, it is required to have more

persistent method. A notification is a message you can display as an icon at the

top of the device which we call notification bar or status bar.

To see the details of the notification, you will have to select the icon which will

display notification drawer having detail about the notification. While working

with emulator with virtual device, you will have to click and drag down the status

bar to expand it which will give you detail as follows. This will be just 64 dp tall

and called normal view.

Above expanded form can have a Big View which will have additional detail

about the notification. You can add up to six additional lines in the notification.

The following screenshot shows such notification.

20. NOTIFICATIONS

Android

149

Create and Send Notifications

There is a simple way to create a notification. Follow the below mentioned steps

in your application to create a notification:

Step 1 - Create Notification Builder

The first step is to create a notification builder

using NotificationCompat.Builder.build(). You will use Notification Builder to set

various Notification properties like its small and large icons, title, priority etc.

NotificationCompat.Builder mBuilder = new

NotificationCompat.Builder(this)

Step 2 - Setting Notification Properties

Once you have Builder object, you can set its Notification properties using

Builder object as per your requirement. But this is mandatory to set at least

following:

 A small icon, set by setSmallIcon()

 A title, set by setContentTitle()

 Detail text, set by setContentText()

mBuilder.setSmallIcon(R.drawable.notification_icon);

mBuilder.setContentTitle("Notification Alert, Click Me!");

mBuilder.setContentText("Hi, This is Android Notification Detail!");

You have plenty of optional properties which you can set for your notification. To

learn more about them, see the reference documentation for

NotificationCompat.Builder.

Step 3 - Attach Actions

This is an optional part and required if you want to attach an action with the

notification. An action allows users to go directly from the notification to

an Activity in your application, where they can look at one or more events or do

further work.

The action is defined by a PendingIntent containing an Intent that starts an

Activity in your application. To associate the PendingIntent with a gesture, call

the appropriate method of NotificationCompat.Builder. For example, if you want

to start Activity when the user clicks the notification text in the notification

drawer, you add the PendingIntent by calling setContentIntent().

Android

150

A PendingIntent object helps you to perform an action on your application’s

behalf, often at a later time, without caring of whether or not your application is

running.

We take help of stack builder object which will contain an artificial back stack for

the started Activity. This ensures that navigating backward from the Activity

leads out of your application to the Home screen.

Intent resultIntent = new Intent(this, ResultActivity.class);

TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

stackBuilder.addParentStack(ResultActivity.class);

// Adds the Intent that starts the Activity to the top of the stack

stackBuilder.addNextIntent(resultIntent);

PendingIntent resultPendingIntent =

 stackBuilder.getPendingIntent(0,

 PendingIntent.FLAG_UPDATE_CURRENT

);

mBuilder.setContentIntent(resultPendingIntent);

Step 4 - Issue the notification

Finally, you pass the Notification object to the system by calling

NotificationManager.notify() to send your notification. Make sure you

call NotificationCompat.Builder.build() method on builder object before

notifying it. This method combines all of the options that have been set and

return a new Notification object.

NotificationManager mNotificationManager =

 (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);

// notificationID allows you to update the notification later on.

mNotificationManager.notify(notificationID, mBuilder.build());

The NotificationCompat.Builder Class

The NotificationCompat.Builder class allows easier control over all the flags, as

well as help constructing the typical notification layouts. Following are few

important and most frequently used methods available as a part of

NotificationCompat.Builder class.

Android

151

S.N. Constants & Description

1 Notification build()

Combine all of the options that have been set and return a new

Notification object.

2 NotificationCompat.Builder setAutoCancel (boolean autoCancel)

Setting this flag will make it so the notification is automatically canceled

when the user clicks it in the panel.

3 NotificationCompat.Builder setContent (RemoteViews views)

Supply a custom RemoteViews to use instead of the standard one.

4 NotificationCompat.Builder setContentInfo (CharSequence info)

Set the large text at the right-hand side of the notification.

5 NotificationCompat.Builder setContentIntent (PendingIntent

intent)

Supply a PendingIntent to send when the notification is clicked.

6 NotificationCompat.Builder setContentText (CharSequence text)

Set the text (second row) of the notification, in a standard notification.

7 NotificationCompat.Builder setContentTitle (CharSequence title)

Set the text (first row) of the notification, in a standard notification.

8 NotificationCompat.Builder setDefaults (int defaults)

Set the default notification options that will be used.

9 NotificationCompat.Builder setLargeIcon (Bitmap icon)

Set the large icon that is shown in the ticker and notification.

10 NotificationCompat.Builder setNumber (int number)

Set the large number at the right-hand side of the notification.

Android

152

11 NotificationCompat.Builder setOngoing (boolean ongoing)

Set whether this is an ongoing notification.

12 NotificationCompat.Builder setSmallIcon (int icon)

Set the small icon to use in the notification layouts.

13 NotificationCompat.Builder setStyle (NotificationCompat.Style

style)

Add a rich notification style to be applied at build time.

14 NotificationCompat.Builder setTicker (CharSequence tickerText)

Set the text that is displayed in the status bar when the notification first

arrives.

15 NotificationCompat.Builder setVibrate (long[] pattern)

Set the vibration pattern to use.

16 NotificationCompat.Builder setWhen (long when)

Set the time that the event occurred. Notifications in the panel are

sorted by this time.

Example:

Following example shows the functionality of an Android notification using a

NotificationCompat.Builder Class which has been introduced in Android 4.1.

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

NotificationDemo under a package com.example.notificationdemo. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add the code to define three

methods startNotification(), cancelNotification() and

updateNotification() to cover maximum functionality related to Android

notifications.

Android

153

3 Create a new Java file src/NotificationView.java, which will be used to

display new layout as a part of new activity which will be started when

user will click any of the notifications

4 Copy image woman.png in res/drawable-* folder and this image will be

used as Notification icon. You can use images with different resolutions

in case you want to provide them for different devices.

5 Modify layout XML file res/layout/activity_main.xml to add three buttons

in linear layout.

6 Create a new layout XML file res/layout/notification.xml. This will be

used as layout file for new activity which will start when user will click

any of the notifications.

7 Modify res/values/strings.xml to define required constant values.

8 Run the application to launch Android emulator and verify the result of

the changes done in the aplication.

Following is the content of the modified main activity file

src/com.example.notificationdemo/MainActivity.java. This file can include

each of the fundamental life-cycle methods.

package com.example.notificationdemo;

import android.os.Bundle;

import android.app.Activity;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.app.TaskStackBuilder;

import android.content.Context;

import android.content.Intent;

import android.support.v4.app.NotificationCompat;

import android.util.Log;

import android.view.View;

import android.widget.Button;

Android

154

public class MainActivity extends Activity {

 private NotificationManager mNotificationManager;

 private int notificationID = 100;

 private int numMessages = 0;

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button startBtn = (Button) findViewById(R.id.start);

 startBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 displayNotification();

 }

 });

 Button cancelBtn = (Button) findViewById(R.id.cancel);

 cancelBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 cancelNotification();

 }

 });

 Button updateBtn = (Button) findViewById(R.id.update);

 updateBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 updateNotification();

 }

 });

 }

 protected void displayNotification() {

 Log.i("Start", "notification");

 /* Invoking the default notification service */

Android

155

 NotificationCompat.Builder mBuilder =

 new NotificationCompat.Builder(this);

 mBuilder.setContentTitle("New Message");

 mBuilder.setContentText("You've received new message.");

 mBuilder.setTicker("New Message Alert!");

 mBuilder.setSmallIcon(R.drawable.woman);

 /* Increase notification number every time a new notification

 arrives */

 mBuilder.setNumber(++numMessages);

 /* Creates an explicit intent for an Activity in your app */

 Intent resultIntent = new Intent(this, NotificationView.class);

 TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

 stackBuilder.addParentStack(NotificationView.class);

 /* Adds the Intent that starts the Activity to the top of the stack

 */

 stackBuilder.addNextIntent(resultIntent);

 PendingIntent resultPendingIntent =

 stackBuilder.getPendingIntent(

 0,

 PendingIntent.FLAG_UPDATE_CURRENT

);

 mBuilder.setContentIntent(resultPendingIntent);

 mNotificationManager =

 (NotificationManager)

 getSystemService(Context.NOTIFICATION_SERVICE);

 /* notificationID allows you to update the notification later on.

Android

156

 */

 mNotificationManager.notify(notificationID, mBuilder.build());

 }

 protected void cancelNotification() {

 Log.i("Cancel", "notification");

 mNotificationManager.cancel(notificationID);

 }

 protected void updateNotification() {

 Log.i("Update", "notification");

 /* Invoking the default notification service */

 NotificationCompat.Builder mBuilder =

 new NotificationCompat.Builder(this);

 mBuilder.setContentTitle("Updated Message");

 mBuilder.setContentText("You've got updated message.");

 mBuilder.setTicker("Updated Message Alert!");

 mBuilder.setSmallIcon(R.drawable.woman);

 /* Increase notification number every time a new notification

arrives */

 mBuilder.setNumber(++numMessages);

 /* Creates an explicit intent for an Activity in your app */

 Intent resultIntent = new Intent(this, NotificationView.class);

 TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

 stackBuilder.addParentStack(NotificationView.class);

 /* Adds the Intent that starts the Activity to the top of the stack

 */

 stackBuilder.addNextIntent(resultIntent);

Android

157

 PendingIntent resultPendingIntent =

 stackBuilder.getPendingIntent(

 0,

 PendingIntent.FLAG_UPDATE_CURRENT

);

 mBuilder.setContentIntent(resultPendingIntent);

 mNotificationManager =

 (NotificationManager)

 getSystemService(Context.NOTIFICATION_SERVICE);

 /* Update the existing notification using same notification ID */

 mNotificationManager.notify(notificationID, mBuilder.build());

 }

}

Following is the content of the modified main activity file

src/com.example.notificationdemo/NotificationView.java.

package com.example.notificationdemo;

import android.os.Bundle;

import android.app.Activity;

public class NotificationView extends Activity{

 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.notification);

 }

}

Android

158

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button android:id="@+id/start"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/start_note"/>

 <Button android:id="@+id/cancel"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/cancel_note" />

 <Button android:id="@+id/update"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/update_note" />

</LinearLayout>

Following will be the content of res/layout/notification.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="400dp"

 android:text="Hi, Your Detailed notification view goes here...." />

Android

159

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">NotificationDemo</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="start_note">Start Notification</string>

 <string name="cancel_note">Cancel Notification</string>

 <string name="update_note">Update Notification</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.notificationdemo"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="17"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.notificationdemo.MainActivity"

Android

160

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"
/>

 </intent-filter>

 </activity>

 <activity android:name=".NotificationView"

 android:label="Details of notification"

 android:parentActivityName=".MainActivity">

 <meta-data

 android:name="android.support.PARENT_ACTIVITY"

 android:value=".MainActivity"/>

 </activity>

 </application>

</manifest>

Let's try to run your NotificationDemo application. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Android

161

Now click Start Notification button, you will see a message "New Message

Alert!" at the top that will display momentarily and after that you will have

following screen having a small icon at the top left corner.

Now let’s expand the view, long click on the small icon, after a second it will

display date information and this is the time when you should drag status bar

down without releasing mouse. You will see status bar will expand and you will

get following screen:

Android

162

Now let's try to click on the image icon, this will launch your new activity which

you have set using intent and you will have following screen:

Next, you can click on "Detail of notification" and it will take you back to the

main screen where you can try using Update Notification button which will

update existing notification and number will increase by 1 but if you will send

notification with new notification ID then it will keep adding in the stack and you

see them separately listed on the screen.

Big View Notification

The following code snippet demonstrates how to alter the notification created in

the previous snippet to use the Inbox big view style. I'm going to update

displayNotification() modification method to show this functionality:

 protected void displayNotification() {

 Log.i("Start", "notification");

 /* Invoking the default notification service */

 NotificationCompat.Builder mBuilder =

 new NotificationCompat.Builder(this);

 mBuilder.setContentTitle("New Message");

 mBuilder.setContentText("You've received new message.");

 mBuilder.setTicker("New Message Alert!");

 mBuilder.setSmallIcon(R.drawable.woman);

Android

163

 /* Increase notification number every time a new notification

arrives */

 mBuilder.setNumber(++numMessages);

 /* Add Big View Specific Configuration */

 NotificationCompat.InboxStyle inboxStyle =

 new NotificationCompat.InboxStyle();

 String[] events = new String[6];

 events[0] = new String("This is first line....");

 events[1] = new String("This is second line...");

 events[2] = new String("This is third line...");

 events[3] = new String("This is 4th line...");

 events[4] = new String("This is 5th line...");

 events[5] = new String("This is 6th line...");

 // Sets a title for the Inbox style big view

 inboxStyle.setBigContentTitle("Big Title Details:");

 // Moves events into the big view

 for (int i=0; i < events.length; i++) {

 inboxStyle.addLine(events[i]);

 }

 mBuilder.setStyle(inboxStyle);

 /* Creates an explicit intent for an Activity in your app */

 Intent resultIntent = new Intent(this, NotificationView.class);

 TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

 stackBuilder.addParentStack(NotificationView.class);

 /* Adds the Intent that starts the Activity to the top of the stack

 */

Android

164

 stackBuilder.addNextIntent(resultIntent);

 PendingIntent resultPendingIntent =

 stackBuilder.getPendingIntent(

 0,

 PendingIntent.FLAG_UPDATE_CURRENT

);

 mBuilder.setContentIntent(resultPendingIntent);

 mNotificationManager =

 (NotificationManager)

 getSystemService(Context.NOTIFICATION_SERVICE);

 /* notificationID allows you to update the notification later on.

 */

 mNotificationManager.notify(notificationID, mBuilder.build());

 }

Now if you will try to run your application then you will find following result in

expanded form of the view:

Android

165

Android location APIs make it easy for you to build location-aware applications,

without needing to focus on the details of the underlying location technology.

This becomes possible with the help of Google Play services, which facilitates

adding location awareness to your app with automated location tracking,

geofencing, and activity recognition.

This tutorial shows you how to use Location Services in your app to get the

current location, get periodic location updates, look up addresses etc.

The Location Object

The Location object represents a geographic location which can consist of a

latitude, longitude, timestamp, and other information such as bearing, altitude

and velocity. There are following important methods which you can use with

Location object to get location specific information:

S.N. Method & Description

1 float distanceTo(Location dest)

Returns the approximate distance in meters between this location and

the given location.

2 float getAccuracy()

Get the estimated accuracy of this location, in meters.

3 double getAltitude()

Get the altitude if available, in meters above sea level.

4 float getBearing()

Get the bearing, in degrees.

5 double getLatitude()

Get the latitude, in degrees.

6 double getLongitude()

21. LOCATION-BASED SERVICES

Android

166

Get the longitude, in degrees.

7 float getSpeed()

Get the speed if it is available, in meters/second over ground.

8 boolean hasAccuracy()

True if this location has an accuracy.

9 boolean hasAltitude()

True if this location has an altitude.

10 boolean hasBearing()

True if this location has a bearing.

11 boolean hasSpeed()

True if this location has a speed.

12 void reset()

Clears the contents of the location.

13 void setAccuracy(float accuracy)

Set the estimated accuracy of this location, meters.

14 void setAltitude(double altitude)

Set the altitude, in meters above sea level.

15 void setBearing(float bearing)

Set the bearing, in degrees.

16 void setLatitude(double latitude)

Set the latitude, in degrees.

17 void setLongitude(double longitude)

Set the longitude, in degrees.

Android

167

18 void setSpeed(float speed)

Set the speed, in meters/second over ground.

19 String toString()

Returns a string containing a concise, human-readable description of

this object.

Get the Current Location

To get the current location, create a location client which

is LocationClient object, connect it to Location Services

using connect() method, and then call its getLastLocation() method. This

method returns the most recent location in the form of Location object that

contains latitude and longitude coordinates and other information as explained

above. To have location based functionality in your activity, you will have to

implement two interfaces:

 GooglePlayServicesClient.ConnectionCallbacks

 GooglePlayServicesClient.OnConnectionFailedListener

These interfaces provide following important callback methods, which you need

to implement in your activity class:

S.N. Callback Methods & Description

1 abstract void onConnected(Bundle connectionHint)

This callback method is called when location service is connected to the

location client successfully. You will use connect() method to connect

to the location client.

2 abstract void onDisconnected()

This callback method is called when the client is disconnected. You will

use disconnect() method to disconnect from the location client.

3 abstract void onConnectionFailed(ConnectionResult result)

This callback method is called when there was an error connecting the

client to the service.

You should create the location client in onCreate() method of your activity

class, then connect it in onStart(), so that Location Services maintains the

Android

168

current location while your activity is fully visible. You should disconnect the

client in onStop() method, so that when your app is not visible, Location

Services is not maintaining the current location. This helps in saving battery

power up-to a large extent.

Get the Updated Location

If you are willing to have location updates, then apart from above mentioned

interfaces, you will need to implement LocationListener interface as well. This

interface provide following callback method, which you need to implement in

your activity class:

S.N. Callback Method & Description

1 abstract void onLocationChanged(Location location)

This callback method is used for receiving notifications from the

LocationClient when the location has changed.

Location Quality of Service

The LocationRequest object is used to request a quality of service (QoS) for

location updates from the LocationClient. There are following useful setter

methods which you can use to handle QoS. There are equivalent getter methods

available which you can check in Android official documentation.

S.N. Method & Description

1 setExpirationDuration(long millis)

Set the duration of this request, in milliseconds.

2 setExpirationTime(long millis)

Set the request expiration time, in millisecond since boot.

3 setFastestInterval(long millis)

Explicitly set the fastest interval for location updates, in milliseconds.

4 setInterval(long millis)

Set the desired interval for active location updates, in milliseconds.

Android

169

5 setNumUpdates(int numUpdates)

Set the number of location updates.

6 setPriority(int priority)

Set the priority of the request.

Now for example, if your application wants high accuracy location it should

create a location request with setPriority(int) set to

PRIORITY_HIGH_ACCURACY and setInterval(long) to 5 seconds. You can also

use bigger interval and/or other priorities like PRIORITY_LOW_POWER for to

request "city" level accuracy or PRIORITY_BALANCED_POWER_ACCURACY for

"block" level accuracy.

Activities should strongly consider removing all location request when entering

the background (for example at onPause()), or at least swap the request to a

larger interval and lower quality to save power consumption.

Displaying a Location Address

Once you have Location object, you can

use Geocoder.getFromLocation() method to get an address for a given

latitude and longitude. This method is synchronous, and may take a long time to

do its work, so you should call the method from the doInBackground()method

of an AsyncTask class.

The AsyncTask must be subclassed to be used and the subclass will override

doInBackground(Params...) method to perform a task in the background and

onPostExecute(Result) method is invoked on the UI thread after the

background computation finishes and at the time to display the result. There is

one more important method available in AyncTask which is execute(Params...

params), this method executes the task with the specified parameters.

Check following example to have better understanding on how we use

AynchTask in any Android application to get work done in the background

without interfering main task.

Example:

Following example shows you in practical how to use Location Services in your app

to get the current location and its equivalent addresses etc.

To experiment with this example, you will need actual Mobile device equipped with

latest Android OS, otherwise you will have to struggle with emulator which may not

work.

Android

170

Install the Google Play Services SDK

Before you proceed to have location support in your Android Applications, you

need to setup Google Play Services SDK using following simple steps:

google-play-services_lib/ to the location where you maintain your Android app

projects. If you are using Eclipse, import the library

Steps Description

1 Launch the SDK Manager.

From Eclipse (with ADT), select Window > Android SDK Manager.

On Windows, double-click the SDK Manager.exe file at the root of the

Android SDK directory.

On Mac or Linux, open a terminal and navigate to the tools/ directory

in the Android SDK directory, then execute android sdk.

2 Search for Google Play services option from the given package list

under Extra and if it is not installed, then install it. The Google Play

services SDK is saved in your Android SDK environment at <android-

sdk>/extras/google/google_play_services/.

3 Copy the library project at <android-

sdk>/extras/google/google_play_services/libproject/ project into your

workspace. Click File > Import, select Android > Existing Android

Code into Workspace, and browse to <android-

sdk>/extras/google/google_play_services/libproject/, library project to

import it.

Create Android Application

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

LBSDemo/i> under a package com.example.lbsdemo. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Add Google Play Service library in your project by following simple

steps given below.

Android

171

3 Modify src/MainActivity.java file and add required code as shown below

to take care of getting current location and its equivalent address.

4 Modify layout XML file res/layout/activity_main.xml to add all GUI

components which include three buttons and two text views to show

location/address.

5 Modify res/values/strings.xml to define required constant values.

6 Modify AndroidManifest.xml as shown below.

7 Run the application to launch Android emulator and verify the result of

the changes done in the aplication.

Let's add Google Play Service reference in the project. Right click on the

project and select Build Path > Configure Build Path > Android > and then

click Add button which will show google-play-service_lib option to be added, just

double click on it, which will add required library reference and you will have

window as follows:

Following is the content of the modified main activity file

src/com.example.lbsdemo/MainActivity.java.

Android

172

package com.example.lbsdemo;

import java.io.IOException;

import java.util.List;

import java.util.Locale;

import com.google.android.gms.common.ConnectionResult;

import com.google.android.gms.common.GooglePlayServicesClient;

import com.google.android.gms.location.LocationClient;

import android.content.Context;

import android.location.Address;

import android.location.Geocoder;

import android.location.Location;

import android.os.AsyncTask;

import android.os.Bundle;

import android.support.v4.app.FragmentActivity;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends FragmentActivity implements

GooglePlayServicesClient.ConnectionCallbacks,

GooglePlayServicesClient.OnConnectionFailedListener

{

 LocationClient mLocationClient;

 private TextView addressLabel;

 private TextView locationLabel;

 private Button getLocationBtn;

 private Button disconnectBtn;

 private Button connectBtn;

Android

173

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 locationLabel = (TextView) findViewById(R.id.locationLabel);

 addressLabel = (TextView) findViewById(R.id.addressLabel);

 getLocationBtn = (Button) findViewById(R.id.getLocation);

 getLocationBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 displayCurrentLocation();

 }

 });

 disconnectBtn = (Button) findViewById(R.id.disconnect);

 disconnectBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 mLocationClient.disconnect();

 locationLabel.setText("Got disconnected....");

 }

 });

 connectBtn = (Button) findViewById(R.id.connect);

 connectBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 mLocationClient.connect();

 locationLabel.setText("Got connected....");

 }

 });

 // Create the LocationRequest object

 mLocationClient = new LocationClient(this, this, this);

 }

 @Override

 protected void onStart() {

Android

174

 super.onStart();

 // Connect the client.

 mLocationClient.connect();

 locationLabel.setText("Got connected....");

 }

 @Override

 protected void onStop() {

 // Disconnect the client.

 mLocationClient.disconnect();

 super.onStop();

 locationLabel.setText("Got disconnected....");

 }

 @Override

 public void onConnected(Bundle dataBundle) {

 // Display the connection status

 Toast.makeText(this, "Connected", Toast.LENGTH_SHORT).show();

 }

 @Override

 public void onDisconnected() {

 // Display the connection status

 Toast.makeText(this, "Disconnected. Please re-connect.",

 Toast.LENGTH_SHORT).show();

 }

 @Override

 public void onConnectionFailed(ConnectionResult connectionResult) {

 // Display the error code on failure

 Toast.makeText(this, "Connection Failure : " +

 connectionResult.getErrorCode(),

 Toast.LENGTH_SHORT).show();

 }

 public void displayCurrentLocation() {

 // Get the current location's latitude & longitude

 Location currentLocation = mLocationClient.getLastLocation();

 String msg = "Current Location: " +

Android

175

 Double.toString(currentLocation.getLatitude()) + "," +

 Double.toString(currentLocation.getLongitude());

 // Display the current location in the UI

 locationLabel.setText(msg);

 // To display the current address in the UI

 (new GetAddressTask(this)).execute(currentLocation);

 }

 /*

 * Following is a subclass of AsyncTask which has been used to get

 * address corresponding to the given latitude & longitude.

 */

 private class GetAddressTask extends AsyncTask<Location, Void,

 String>{

 Context mContext;

 public GetAddressTask(Context context) {

 super();

 mContext = context;

 }

 /*

 * When the task finishes, onPostExecute() displays the address.

 */

 @Override

 protected void onPostExecute(String address) {

 // Display the current address in the UI

 addressLabel.setText(address);

 }

 @Override

 protected String doInBackground(Location... params) {

 Geocoder geocoder =

 new Geocoder(mContext, Locale.getDefault());

 // Get the current location from the input parameter list

Android

176

 Location loc = params[0];

 // Create a list to contain the result address

 List<Address> addresses = null;

 try {

 addresses = geocoder.getFromLocation(loc.getLatitude(),

 loc.getLongitude(), 1);

 } catch (IOException e1) {

 Log.e("LocationSampleActivity",

 "IO Exception in getFromLocation()");

 e1.printStackTrace();

 return ("IO Exception trying to get address");

 } catch (IllegalArgumentException e2) {

 // Error message to post in the log

 String errorString = "Illegal arguments " +

 Double.toString(loc.getLatitude()) +

 ", " +

 Double.toString(loc.getLongitude()) +

 " passed to address service";

 Log.e("LocationSampleActivity", errorString);

 e2.printStackTrace();

 return errorString;

 }

 // If the reverse geocode returned an address

 if (addresses != null && addresses.size() > 0) {

 // Get the first address

 Address address = addresses.get(0);

 /*

 * Format the first line of address (if available),

 * city, and country name.

 */

 String addressText = String.format(

 "%s, %s, %s",

 // If there's a street address, add it

 address.getMaxAddressLineIndex() > 0 ?

Android

177

 address.getAddressLine(0) : "",

 // Locality is usually a city

 address.getLocality(),

 // The country of the address

 address.getCountryName());

 // Return the text

 return addressText;

 } else {

 return "No address found";

 }

 }

 }// AsyncTask class

}

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button android:id="@+id/getLocation"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/get_location"/>

 <Button android:id="@+id/disconnect"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/disconnect"/>

 <Button android:id="@+id/connect"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/connect"/>

Android

178

 <TextView

 android:id="@+id/locationLabel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <TextView

 android:id="@+id/addressLabel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">LBSDemo</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="get_location">Get Location</string>

 <string name="disconnect">Disconnect Service</string>

 <string name="connect">Connect Service</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.lbsdemo"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

Android

179

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission

 android:name="android.permission.ACCESS_COARSE_LOCATION"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.lbsdemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

/>

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your LBSDemo application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

180

Select mobile device as an option and then check your mobile device which will

display following screen:

Now to see location select Get Location Button which will display location

information as follows:

Android

181

You can try by disconnecting location client using Disconnect Service and then

connecting it by using Connect Service button. You can also modify to get

location update as explained above and in Android Official documentation.

Android

182

You have learnt Android Intent, which is an object carrying an intent i.e.

message from one component to another component within the application or

outside the application.

As such you do not need to develop your email client from scratch because they

are already available like Gmail and K9mail. But you will need to send email

from your Android application, where you will have to write an Activity that

needs to launch an email client and sends an email using your Android device.

For this purpose, your Activity will send an ACTION_SEND along with appropriate

data load, to the Android Intent Resolver. The specified chooser gives the proper

interface for the user to pick how to send your email data.

Following section explains different parts of our Intent object required to send an

email.

Intent Object - Action to send Email

You will use ACTION_SEND action to launch an email client installed on your

Android device. Following is simple syntax to create an intent with

ACTION_SEND action.

Intent emailIntent = new Intent(Intent.ACTION_SEND);

Intent Object - Data/Type to send Email

To send an email you need to specify mailto: as URI using setData() method

and data type will be to text/plain using setType() method as follows:

emailIntent.setData(Uri.parse("mailto:"));

emailIntent.setType("text/plain");

Intent Object - Extra to send Email

Android has built-in support to add TO, SUBJECT, CC, TEXT etc. fields which can

be attached to the intent before sending the intent to a target email client. You

can use following extra fields in your email:

S.N. Extra Data & Description

1 EXTRA_BCC

22. SENDING EMAIL

Android

183

A String[] holding e-mail addresses that should be blind carbon copied.

2 EXTRA_CC

A String[] holding e-mail addresses that should be carbon copied.

3 EXTRA_EMAIL

A String[] holding e-mail addresses that should be delivered to.

4 EXTRA_HTML_TEXT

A constant String that is associated with the Intent, used with

ACTION_SEND to supply an alternative to EXTRA_TEXT as HTML

formatted text.

5 EXTRA_SUBJECT

A constant string holding the desired subject line of a message.

6 EXTRA_TEXT

A constant CharSequence that is associated with the Intent, used with

ACTION_SEND to supply the literal data to be sent.

7 EXTRA_TITLE

A CharSequence dialog title to provide to the user when used with a

ACTION_CHOOSER.

Here is an example showing you how to assign extra data to your intent:

emailIntent.putExtra(Intent.EXTRA_EMAIL , new
String[]{"recipient@example.com"});

emailIntent.putExtra(Intent.EXTRA_SUBJECT, "subject of email");

emailIntent.putExtra(Intent.EXTRA_TEXT , "body of email");

Example:

Following example shows you in practical how to use Intent object to launch Email

client to send an Email to the given recipients.

To experiment with this example, you will need actual Mobile device equipped

with latest Android OS, otherwise you will have to struggle with emulator which

may not work. Second you will need to have an Email client like GMail or K9mail

installed on your device.

Android

184

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

SendEmailDemo under a package com.example.sendemaildemo. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add required code to take care of

sending email.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required. I'm adding a simple button to launch Email

Client.

4 Modify res/values/strings.xml to define required constant values.

5 Modify AndroidManifest.xml as shown below.

6 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.sendemaildemo/MainActivity.java.

package com.example.sendemaildemo;

import android.net.Uri;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.util.Log;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends Activity {

Android

185

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button startBtn = (Button) findViewById(R.id.sendEmail);

 startBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 sendEmail();

 }

 });

 }

 protected void sendEmail() {

 Log.i("Send email", "");

 String[] TO = {"amrood.admin@gmail.com"};

 String[] CC = {"mcmohd@gmail.com"};

 Intent emailIntent = new Intent(Intent.ACTION_SEND);

 emailIntent.setData(Uri.parse("mailto:"));

 emailIntent.setType("text/plain");

 emailIntent.putExtra(Intent.EXTRA_EMAIL, TO);

 emailIntent.putExtra(Intent.EXTRA_CC, CC);

 emailIntent.putExtra(Intent.EXTRA_SUBJECT, "Your subject");

 emailIntent.putExtra(Intent.EXTRA_TEXT, "Email message goes here");

 try {

 startActivity(Intent.createChooser(emailIntent, "Send

 mail..."));

 finish();

 Log.i("Finished sending email...", "");

Android

186

 } catch (android.content.ActivityNotFoundException ex) {

 Toast.makeText(MainActivity.this,

 "There is no email client installed.",

 Toast.LENGTH_SHORT).show();

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button android:id="@+id/sendEmail"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/compose_email"/>

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">SendEmailDemo</string>

 <string name="hello_world">Hello world!</string>

Android

187

 <string name="action_settings">Settings</string>

 <string name="compose_email">Compose Email</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.sendemaildemo"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.sendemaildemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your SendEmailDemo application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

Android

188

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Select your mobile device as an option and then check your mobile device which

will display following screen:

Now use Compose Email button to list down all the installed email clients. From

the list, you can choose one of email clients to send your email. I'm going to use

Gmail client to send my email which will have all the provided defaults fields

available as shown below. Here From: will be default email ID you have

registered for your Android device.

Android

189

You can modify either of the given default fields and finally use send email

button (marked with red rectangle) to send your email to the mentioned

recipients.

Android

190

There are following two ways to send SMS using Android device:

 Using SmsManager to send SMS

 Using Built-in Intent to send SMS

Using SmsManager to send SMS

The SmsManager manages SMS operations such as sending data to the given

mobile device. You can create this object by calling the static method

SmsManager.getDefault() as follows:

SmsManager smsManager = SmsManager.getDefault();

Once you have SmsManager object, you can use sendDataMessage() method to

send SMS at the specified mobile number as below:

smsManager.sendTextMessage("phoneNo", null, "SMS text", null, null);

Apart from the above method, there are few other important functions available

in SmsManager class. These methods are listed below:

S.N. Method & Description

1 ArrayList<String> divideMessage(String text)

This method divides a message text into several fragments, none bigger

than the maximum SMS message size.

2 static SmsManager getDefault()

This method is used to get the default instance of the SmsManager

3 void sendDataMessage(String destinationAddress, String

scAddress, short destinationPort, byte[] data, PendingIntent

sentIntent, PendingIntent deliveryIntent)

This method is used to send a data based SMS to a specific application

port.

4 void sendMultipartTextMessage(String destinationAddress,

String scAddress, ArrayList<String> parts,

23. SENDING SMS

Android

191

ArrayList<PendingIntent> sentIntents,

ArrayList<PendingIntent> deliveryIntents)

Send a multi-part text based SMS.

5 void sendTextMessage(String destinationAddress, String

scAddress, String text, PendingIntent sentIntent, PendingIntent

deliveryIntent)

Send a text based SMS.

Example:

Following example shows you in practical how to use SmsManager object to send an

SMS to the given mobile number.

To experiment with this example, you will need actual Mobile device equipped

with latest Android OS, otherwise you will have to struggle with emulator which

may not work.

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

SendSMSDemo under a package com.example.sendsmsdemo. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add required code to take care of

sending email.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required. I'm adding a simple GUI to take mobile number

and SMS text to be sent and a simple button to send SMS.

4 Modify res/values/strings.xml to define required constant values.

5 Modify AndroidManifest.xml as shown below.

6 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Android

192

Following is the content of the modified main activity file

src/com.example.sendsmsdemo/MainActivity.java.

package com.example.sendsmsdemo;

import android.os.Bundle;

import android.app.Activity;

import android.telephony.SmsManager;

import android.util.Log;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

 Button sendBtn;

 EditText txtphoneNo;

 EditText txtMessage;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 sendBtn = (Button) findViewById(R.id.btnSendSMS);

 txtphoneNo = (EditText) findViewById(R.id.editTextPhoneNo);

 txtMessage = (EditText) findViewById(R.id.editTextSMS);

 sendBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 sendSMSMessage();

 }

 });

Android

193

 }

 protected void sendSMSMessage() {

 Log.i("Send SMS", "");

 String phoneNo = txtphoneNo.getText().toString();

 String message = txtMessage.getText().toString();

 try {

 SmsManager smsManager = SmsManager.getDefault();

 smsManager.sendTextMessage(phoneNo, null, message, null, null);

 Toast.makeText(getApplicationContext(), "SMS sent.",

 Toast.LENGTH_LONG).show();

 } catch (Exception e) {

 Toast.makeText(getApplicationContext(),

 "SMS faild, please try again.",

 Toast.LENGTH_LONG).show();

 e.printStackTrace();

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is

present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical" >

Android

194

 <TextView

 android:id="@+id/textViewPhoneNo"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/phone_label" />

 <EditText

 android:id="@+id/editTextPhoneNo"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:inputType="phone"/>

 <TextView

 android:id="@+id/textViewMessage"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/sms_label" />

 <EditText

 android:id="@+id/editTextSMS"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:inputType="textMultiLine"/>

 <Button android:id="@+id/btnSendSMS"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/send_sms_label"/>

</LinearLayout>

Android

195

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">SendSMSDemo</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="phone_label">Enter Phone Number:</string>

 <string name="sms_label">Enter SMS Message:</string>

 <string name="send_sms_label">Send SMS</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.sendsmsdemo"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.SEND_SMS" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.sendsmsdemo.MainActivity"

 android:label="@string/app_name" >

Android

196

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your SendSMSDemo application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

197

Select your mobile device as an option and then check your mobile device which

will display following screen:

Now you can enter a desired mobile number and a text message to be sent on

that number. Finally click on Send SMS button to send your SMS. Make sure

your GSM connection is working fine to deliver your SMS to its recipient.

You can take a number of SMS separated by comma and then inside your

program you will have to parse them into an array string and finally you can use

a loop to send message to all the given numbers. That's how you can write your

own SMS client. Next section will show you how to use existing SMS client to

send SMS.

Using Built-in Intent to send SMS

You can use Android Intent to send SMS by calling built-in SMS functionality of

the Android. Following section explains different parts of our Intent object

required to send an SMS.

Intent Object - Action to send SMS

You will use ACTION_VIEW action to launch an SMS client installed on your

Android device. Following is a simple syntax to create an intent with

ACTION_VIEW action.

Intent smsIntent = new Intent(Intent.ACTION_VIEW);

Android

198

Intent Object - Data/Type to send SMS

To send an SMS you need to specify smsto: as URI using setData() method and

data type will be to vnd.android-dir/mms-sms using setType() method as

follows:

smsIntent.setData(Uri.parse("smsto:"));

smsIntent.setType("vnd.android-dir/mms-sms");

Intent Object - Extra to send SMS

Android has built-in support to add phone number and text message to send an

SMS as follows:

smsIntent.putExtra("address" , new String("0123456789;3393993300"));

smsIntent.putExtra("sms_body" , "Test SMS to Angilla");

Here address and sms_body are case sensitive and should be specified in small

characters only. You can specify more than one number in single string but

separated by semi-colon (;).

Example:

Following example shows you in practical how to use Intent object to launch SMS

client to send an SMS to the given recipients.

To experiment with this example, you will need actual Mobile device equipped

with latest Android OS, otherwise you will have to struggle with emulator which

may not work.

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

SendSMSDemo under a package com.example.sendsmsdemo. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add required code to take care of

sending SMS.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required. I'm adding a simple button to launch SMS

Client.

4 Modify res/values/strings.xml to define required constant values.

Android

199

5 Modify AndroidManifest.xml as shown below.

6 Run the application to launch Android emulator and verify the result of

the changes done in the aplication.

Following is the content of the modified main activity file

src/com.example.sendsmsdemo/MainActivity.java.

package com.example.sendsmsdemo;

import android.net.Uri;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.util.Log;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button startBtn = (Button) findViewById(R.id.sendSMS);

 startBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 sendSMS();

 }

 });

Android

200

 }

 protected void sendSMS() {

 Log.i("Send SMS", "");

 Intent smsIntent = new Intent(Intent.ACTION_VIEW);

 smsIntent.setData(Uri.parse("smsto:"));

 smsIntent.setType("vnd.android-dir/mms-sms");

 smsIntent.putExtra("address" , new String ("0123456789"));

 smsIntent.putExtra("sms_body" , "Test SMS to Angilla");

 try {

 startActivity(smsIntent);

 finish();

 Log.i("Finished sending SMS...", "");

 } catch (android.content.ActivityNotFoundException ex) {

 Toast.makeText(MainActivity.this,

 "SMS faild, please try again later.",

 Toast.LENGTH_SHORT).show();

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

Android

201

 android:orientation="vertical" >

 <Button android:id="@+id/sendSMS"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/compose_sms"/>

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">SendSMSDemo</string>

 <string name="hello_world">Hello world!</string>

 <string name="action_settings">Settings</string>

 <string name="compose_sms">Compose SMS</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.sendsmsdemo"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

Android

202

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.sendsmsdemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your SendSMSDemo application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

203

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

204

Now use Compose SMS button to launch Android built-in SMS clients which is

shown below:

You can modify either of the given default fields and finally use send SMS button

(marked with red rectangle) to send your SMS to the mentioned recipient.

Android

205

As such every Android Device specially Mobile phone is meant to provide a

functionality to make a phone call but still you may need to write an application

where you want to give an option to your user to make a call using a hard coded

phone number.

This chapter lists down all the simple steps to create an application which can be

used to make a Phone Call. You can use Android Intent to make phone call by

calling built-in Phone Call functionality of the Android. Following section explains

different parts of our Intent object required to make a call.

Intent Object - Action to make Phone Call

You will use ACTION_CALL action to trigger built-in phone call functionality

available in Android device. Following is simple syntax to create an intent with

ACTION_CALL action.

Intent phoneIntent = new Intent(Intent.ACTION_CALL);

You can use ACTION_DIAL action instead of ACTION_CALL, in that case you

will have option to modify hardcoded phone number before making a call instead

of making a direct call.

Intent Object - Data/Type to make Phone Call

To make a phone call at a given number 91-800-001-0101, you need to

specify tel: as URI using setData() method as follows:

phoneIntent.setData(Uri.parse("tel:91-800-001-0101"));

The interesting point is that, to make a phone call, you do not need to specify

any extra data or data type.

Example:

Following example shows you in practical how to use Android Intent to make phone

call to the given mobile number.

To experiment with this example, you will need actual Mobile device equipped

with latest Android OS, otherwise you will have to struggle with emulator which

may not work.

24. PHONE CALLS

Android

206

Step Description

1 You will use Eclipse IDE to create an Android application and name it as

PhoneCallDemo under a package com.example.phonecalldemo. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file and add required code to take care of

making a call.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required. I'm adding a simple button to Call 91-800-001-

0101 number.

4 Modify res/values/strings.xml to define required constant values.

5 Modify AndroidManifest.xml as shown below.

6 Run the application to launch Android emulator and verify the result of

the changes done in the application.

Following is the content of the modified main activity file

src/com.example.phonecalldemo/MainActivity.java.

package com.example.phonecalldemo;

import android.net.Uri;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.util.Log;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends Activity {

Android

207

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button startBtn = (Button) findViewById(R.id.makeCall);

 startBtn.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 makeCall();

 }

 });

 }

 protected void makeCall() {

 Log.i("Make call", "");

 Intent phoneIntent = new Intent(Intent.ACTION_CALL);

 phoneIntent.setData(Uri.parse("tel:91-800-001-0101"));

 try {

 startActivity(phoneIntent);

 finish();

 Log.i("Finished making a call...", "");

 } catch (android.content.ActivityNotFoundException ex) {

 Toast.makeText(MainActivity.this,

 "Call faild, please try again later.",

 Toast.LENGTH_SHORT).show();

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is

present.

Android

208

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following will be the content of res/layout/activity_main.xml file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <Button android:id="@+id/makeCall"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/make_call"/>

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">PhoneCallDemo</string>

 <string name="hello_world">Hello world!</string>

 <string name="action_settings">Settings</string>

 <string name="make_call">Call 91-800-001-0101</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.phonecalldemo"

Android

209

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.CALL_PHONE" />

 <uses-permission android:name="android.permission.READ_PHONE_STATE"

 />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.phonecalldemo.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your PhoneCallDemo application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

210

Select your mobile device as an option and then check your mobile device which

will display following screen:

Now use Call 91-800-001-0101 button to make phone call as shown below:

Android

211

Android

212

Android application publishing is a process that makes your Android applications

available to users. Infact, publishing is the last phase of the Android application

development process.

Once you have developed and fully tested your Android Application, you can

start selling or distributing free using Google Play (A famous Android

marketplace). You can also release your applications by sending them directly to

users or by letting users download them from your own website.

You can check a detailed publishing process at Android official website, but this

tutorial will take you through simple steps to launch your application on Google

Play. Here is a simplified check list which will help you in launching your Android

application:

Step Activity

1 Regression Testing Before you publish your application, you need to

make sure that it is meeting the basic quality expectations for all

Android apps, on all of the devices that you are targeting. So perform

all the required testing on different devices including phone and tablets.

2 Application Rating When you will publish your application at Google

Play, you will have to specify a content rating for your app, which

informs Google Play users of its maturity level. Currently available

ratings are (a) Everyone (b) Low maturity (c) Medium maturity (d) High

maturity.

3 Targeted Regions Google Play lets you control what countries and

territories where your application will be sold. Accordingly you must

take care of setting up time zone, localization or any other specific

requirement as per the targeted region.

4 Application Size Currently, the maximum size for an APK published on

Google Play is 50 MB. If your app exceeds that size, or if you want to

offer a secondary download, you can use APK Expansion Files, which

Google Play will host for free on its server infrastructure and

25. PUBLISHING ANDROID
APPLICATION

Android

213

automatically handle the download to devices.

5 SDK and Screen Compatibility It is important to make sure that your

app is designed to run properly on the Android platform versions and

device screen sizes that you want to target.

6 Application Pricing Deciding whether your app will be free or paid is

important because, on Google Play, free apps must remain free. If you

want to sell your application then you will have to specify its price in

different currencies.

7 Promotional Content It is a good marketing practice to supply a

variety of high-quality graphic assets to showcase your app or brand.

After you publish, these appear on your product details page, in store

listings and search results, and elsewhere.

8 Build and Upload release-ready APK The release-ready APK is what

you will upload to the Developer Console and distribute to users. You

can check complete detail on how to create a release-ready version of

your app: Preparing for Release.

9 Finalize Application Detail Google Play gives you a variety of ways to

promote your app and engage with users on your product details page,

from colorful graphics, screenshots, and videos to localized

descriptions, release details, and links to your other apps. So you can

decorate your application page and provide as much as clear crisp

detail you can provide.

Export Android Application

You will need to export your application as an APK (Android Package) file before

you upload it Google Play marketplace.

To export an application, just open that application project in Eclipse and

select File->Export from your Eclipse and follow the simple steps to export your

application:

http://developer.android.com/tools/publishing/preparing.html

Android

214

Next, select Export Android Application option as shown in the above screen

shot and then click Next and again Next so that you get following screen where

you will choose Create new keystore to store your application.

Android

215

Enter your password to protect your application and click on Next button once

again. It will display following screen to let you create a key for your application:

Android

216

Once you filled up all the information, click Next button and finally it will ask you

a location where Application will be exported:

Android

217

Finally, you click on Finish button to generate your Android Application Package

File which will be uploaded at Google Play marketplace.

Google Play Registration

The most important step is to register with Google Play using Google Play

Marketplace. You can use your existing google ID if you have any otherwise you

can create a new Google ID and then register with the marketplace. You will

have following screen to accept terms and condition.

https://play.google.com/apps/publish/
https://play.google.com/apps/publish/

Android

218

You can use Continue to payment button to proceed to make a payment of

$25 as a registration fee and finally to complete your account detail.

Once you are a registered user at Google Play, you can upload release-ready

APK for your application and finally you will complete application detail using

application detail page as mentioned in step 9 of the above mentioned checklist.

Android

219

Some times in your application, if you wanted to ask the user about taking a

decision between yes or no in response of any particular action taken by the

user, by remaining in the same activity and without changing the screen, you

can use Alert Dialog.

In order to make an alert dialog, you need to make an object of

AlertDialogBuilder which an inner class of AlertDialog. Its syntax is given below:

AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(this);

Now you have to set the positive (yes) or negative (no) button using the object

of the AlertDialogBuilder class. Its syntax is-

alertDialogBuilder.setPositiveButton(CharSequence text,
DialogInterface.OnClickListener listener)

alertDialogBuilder.setNegativeButton(CharSequence text,

DialogInterface.OnClickListener listener)

Apart from this, you can use other functions provided by the builder class to

customize the alert dialog. These are listed below:

Sr.No Method type & description

1 setIcon(Drawable icon)

This method set the icon of the alert dialog box.

2 setCancelable(boolean cancelable)

This method sets the property that the dialog can be cancelled or not.

3 setMessage(CharSequence message)

This method sets the message to be displayed in the alert dialog.

4 setMultiChoiceItems(CharSequence[] items, boolean[]

checkedItems, DialogInterface.OnMultiChoiceClickListener

listener)

This method sets list of items to be displayed in the dialog as the

content. The selected option will be notified by the listener.

26. ALERT DIALOG TUTORIAL

Android

220

5 setOnCancelListener(DialogInterface.OnCancelListener

onCancelListener)

This method Sets the callback that will be called if the dialog is

canceled.

6 setTitle(CharSequence title)

This method sets the title that will appear in the dialog.

After creating and setting the dialog builder, you will create an alert dialog by

calling the create() method of the builder class. Its syntax is:

AlertDialog alertDialog = alertDialogBuilder.create();

alertDialog.show();

This will create the alert dialog and will show it on the screen.

Example:

The following example demonstrates the use of AlertDialog in android. It uses three

different activities to demonstrate it. The dialog asks you to jump to positive activity

or negative activity or cancel it.

To experiment with this example, you need to run this on an emulator or an actual

device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as AlertDialog under a package com.example.alertdialog. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add alert dialog code to launch the

dialog.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Create a new activity called PositiveActivity and confirm it by visiting

src/PositiveActivity.java.

5 Modify layout XML file of the newly created activity

Android

221

res/layout/activity_positive.xml and add any GUI component if

required.

6 Create a new activity called NegativeActivity and confirm it by visiting

src/NegativeActivity.java.

7 Modify layout XML file of the newly created activity

res/layout/activity_negative.xml and add any GUI component if

required.

8 Modify res/values/strings.xml to define required constant values.

9 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the modified code of src/com.example.alertdialog/MainActivity.java

package com.example.alertdialog;

import com.example.alertdialog.*;

import android.os.Bundle;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.content.Intent;

import android.view.Menu;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

Android

222

 public void open(View view){

 AlertDialog.Builder alertDialogBuilder = new

 AlertDialog.Builder(this);

 alertDialogBuilder.setMessage(R.string.decision);

 alertDialogBuilder.setPositiveButton(R.string.positive_button,

 new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface arg0, int arg1) {

 Intent positveActivity = new
Intent(getApplicationContext(),com.example.alertdialog.Positi

veActivity.c lass);

 startActivity(positveActivity);

 }

 });

 alertDialogBuilder.setNegativeButton(R.string.negative_button,

 new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 Intent negativeActivity = new

Intent(getApplicationContext(),com.example.alertdialog.Negati

veActivity.c lass);

 startActivity(negativeActivity);

 }

 });

 AlertDialog alertDialog = alertDialogBuilder.create();

 alertDialog.show();

 }

 @Override

Android

223

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the default code of src/com.example.alertdialog/PositiveActivity.java

package com.example.alertdialog;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

public class PositiveActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_positive);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.positive, menu);

 return true;

 }

}

Android

224

Here is the default code of src/com.example.alertdialog/NegativeActivity.java

package com.example.alertdialog;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

public class NegativeActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_negative);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.negative, menu);

 return true;

 }

}

Here is the modified code of res/layout/activity_main.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

Android

225

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="170dp"

 android:onClick="open"

 android:text="@string/hello_world" />

</RelativeLayout>

Here is the modified code of res/layout/activity_positive.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".PositiveActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="14dp"

Android

226

 android:layout_marginTop="20dp"

 android:text="@string/positive"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Here is the modified code of res/layout/activity_negative.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".NegativeActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="14dp"

 android:layout_marginTop="17dp"

 android:text="@string/negative"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Here is the modified code of Strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

Android

227

 <string name="app_name">AlertDialog</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="title_activity_positive">PositiveActivity</string>

 <string name="title_activity_negative">NegativeActivity</string>

 <string name="positive">Positive Activity</string>

 <string name="negative">Negative Activity</string>

 <string name="decision">Are you sure, you wanted to make this

 decision</string>

 <string name="positive_button">+ive</string>

 <string name="negative_button">-ive</string>

</resources>

Here is the default code of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.alertdialog"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.alertdialog.MainActivity"

 android:label="@string/app_name" >

Android

228

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="com.example.alertdialog.PositiveActivity"

 android:label="@string/title_activity_positive" >

 </activity>

 <activity

 android:name="com.example.alertdialog.NegativeActivity"

 android:label="@string/title_activity_negative" >

 </activity>

</application>

</manifest>

Let's try to run your Camera application. We assume, you have connected your

actual Android Mobile device with your computer. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Before starting your application, Eclipse will display following window to select

an option where you want to run your Android application.

Android

229

Android

230

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

231

Now just tap the button hello world to see the alert box, which would be

something like this:

Android

232

Now select any of the two buttons and see the respective activity loading up. In

case you select positive button, this screen would appear:

Android

233

Now press back button on your device, and this time select negative from your

alert dialog. The following screen would appear this time:

Android

234

Animation in android is possible in many ways. We will discuss one easy and

widely used way of making animation called tweened animation.

Tween Animation

Tween Animation takes some parameters such as start value, end value, size,

time duration, rotation angle etc., and perform the required animation on that

object. It can be applied to any type of object. So in order to use this, android

has povided us a class called Animation.

In order to perform animation in android, we are going to call a static function

loadAnimation() of the class AnimationUtils. We are going to receive the result in

an instance of Animation Object. Its syntax is as follows:

Animation animation =

AnimationUtils.loadAnimation(getApplicationContext(),

R.anim.myanimation);

Note the second parameter. It is the name of the our animation xml file. You

have to create a new folder called anim under res directory and make an xml file

under anim folder.

This animation class has many useful functions which are listed below:

Sr.No Method & Description

1 start()

This method starts the animation.

2 setDuration(long duration)

This method sets the duration of an animation.

3 getDuration()

This method gets the duration which is set by above method.

4 end()

This method ends the animation.

27. ANIMATIONS

Android

235

5 cancel()

This method cancels the animation.

In order to apply this animation to an object, we will just call the

startAnimation() method of the object. Its syntax is:

ImageView image1 = (ImageView)findViewById(R.id.imageView1);

image.startAnimation(animation);

Zoom in animation

In order to perform a zoom in animation, create an XML file under anim folder

under res directory and put this code in the file.

<set xmlns:android="http://schemas.android.com/apk/res/android">

 <scale xmlns:android="http://schemas.android.com/apk/res/android"

 android:fromXScale="0.5"

 android:toXScale="3.0"

 android:fromYScale="0.5"

 android:toYScale="3.0"

 android:duration="5000"

 android:pivotX="50%"

 android:pivotY="50%" >

 </scale>

</set>

The parameter fromXScale and fromYScale defines the start point and the

parameters toXScale and toYScale defines the end point. The duration defines

the time of animation and the pivotX,pivotY defines the center from where the

animation would start.

Example:

The following example demonstrates the use of Animation in android. You would

be able to choose different type of animation from the menu and the selected

animation will be applied on an imageView on the screen.

To experiment with this example, you need to run this on an emulator or an

actual device.

Android

236

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Animation under a package com.example.animation. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add animation code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Create a new folder under res directory and call it anim. Confirm it by

visiting res/anim.

5 Right click on anim and click on new and select Android XML file You

have to create three different files that are listed below.

6 Create files myanimation.xml, clockwise.xml, fade.xml and add the

XML code.

7 Modify res/values/string.xml file and add necessary string

components.

8 Modify res/menu/main.xml file and add necessary menu components.

9 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the modified code of src/com.example.animation/MainActivity.java.

package com.example.animation;

import com.example.animation.R;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

Android

237

import android.view.MenuItem;

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

import android.widget.ImageView;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public boolean onOptionsItemSelected(MenuItem item)

 {

 super.onOptionsItemSelected(item);

 switch(item.getItemId())

 {

 case R.id.zoomInOut:

 ImageView image = (ImageView)findViewById(R.id.imageView1);

 Animation animation =
AnimationUtils.loadAnimation(getApplicationContext(),

R.anim.myanimation);

 image.startAnimation(animation);

 return true;

 case R.id.rotate360:

Android

238

 ImageView image1 = (ImageView)findViewById(R.id.imageView1);

 Animation animation1 =

AnimationUtils.loadAnimation(getApplicationContext(),

R.anim.clockwise);

 image1.startAnimation(animation1);

 return true;

 case R.id.fadeInOut:

 ImageView image2 = (ImageView)findViewById(R.id.imageView1);

 Animation animation2 =

AnimationUtils.loadAnimation(getApplicationContext(),

R.anim.fade);

 image2.startAnimation(animation2);

 return true;

 }

 return false;

 }

}

Here is the modified code of res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="top"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ImageView

Android

239

 android:id="@+id/imageView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="179dp"

 android:src="@drawable/ic_launcher" />

</RelativeLayout>

Here is the code of res/anim/myanimation.xml.

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android">

 <scale xmlns:android="http://schemas.android.com/apk/res/android"

 android:fromXScale="0.5"

 android:toXScale="3.0"

 android:fromYScale="0.5"

 android:toYScale="3.0"

 android:duration="5000"

 android:pivotX="50%"

 android:pivotY="50%" >

 </scale>

 <scale xmlns:android="http://schemas.android.com/apk/res/android"

 android:startOffset="5000"

 android:fromXScale="3.0"

 android:toXScale="0.5"

 android:fromYScale="3.0"

 android:toYScale="0.5"

 android:duration="5000"

 android:pivotX="50%"

Android

240

 android:pivotY="50%" >

 </scale>

</set>

Here is the code of res/anim/clockwise.xml.

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android">

 <rotate xmlns:android="http://schemas.android.com/apk/res/android"

 android:fromDegrees="0"

 android:toDegrees="360"

 android:pivotX="50%"

 android:pivotY="50%"

 android:duration="5000" >

 </rotate>

 <rotate xmlns:android="http://schemas.android.com/apk/res/android"

 android:startOffset="5000"

 android:fromDegrees="360"

 android:toDegrees="0"

 android:pivotX="50%"

 android:pivotY="50%"

 android:duration="5000" >

 </rotate>

</set>

Here is the code of res/anim/fade.xml.

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

Android

241

 android:interpolator="@android:anim/accelerate_interpolator" >

 <alpha

 android:fromAlpha="0"

 android:toAlpha="1"

 android:duration="2000" >

 </alpha>

 <alpha

 android:startOffset="2000"

 android:fromAlpha="1"

 android:toAlpha="0"

 android:duration="2000" >

 </alpha>

</set>

Here is the modified code of res/menu/main.xml.

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item

 android:id="@+id/rotate360"

 android:orderInCategory="100"

 android:showAsAction="never"

 android:title="@string/rotate_String"/>

 <item

 android:id="@+id/zoomInOut"

 android:orderInCategory="100"

 android:title="@string/zoom_In_Out"/>

 <item

Android

242

 android:id="@+id/fadeInOut"

 android:orderInCategory="100"

 android:title="@string/fade_String"/>

</menu>

Here is the modified code of res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Animation</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="zoom_In_Out">Zoom In/Out</string>

 <string name="rotate_String">Clockwise/Anti Clockwise</string>

 <string name="fade_String">Fade In/Out</string>

</resources>

Here is the default code of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.animation"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

Android

243

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.animation.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your Animation application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

244

Android

245

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

246

Now just select the menu from your mobile, and a menu would appear which

would be something like this:

Android

247

Now just select the Zoom in, Zoom out option from menu and an animation

would appear which would be something like this:

Android

248

Now just select the clockwise option from menu and an animation would appear

which would be something like this:

Android

249

Now just select the fade in/out option from menu and an animation would

appear which would be something like this:

Note: If you run it in emulator, you may not experience smooth animation

effect. You have to run it in your android mobile in order to experience the

smooth animation.

Android

250

Android has a built-in microphone through which you can capture audio and

store it, or play it in your phone. There are many ways to do that but the most

common way is through MediaRecorder class.

Android provides MediaRecorder class to record audio or video. To use

MediaRecorder class, you will first create an instance of MediaRecorder class. Its

syntax is given below.

MediaRecorder myAudioRecorder = new MediaRecorder();

Now you will set the source, output and encoding format and output file. Their

syntax is given below.

myAudioRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

myAudioRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);

myAudioRecorder.setAudioEncoder(MediaRecorder.OutputFormat.AMR_NB);

myAudioRecorder.setOutputFile(outputFile);

After specifying the audio source and format and its output file, we can then call

the two basic methods perpare and start to start recording the audio.

myAudioRecorder.prepare();

myAudioRecorder.start();

Apart from these methods, there are other methods listed in the MediaRecorder

class that allows you more control over audio and video recording.

Sr.No Method & description

1 setAudioSource()

This method specifies the source of audio to be recorded.

2 setVideoSource()

This method specifies the source of video to be recorded.

3 setOutputFormat()

This method specifies the audio format in which audio to be stored.

28. AUDIO CAPTURE

Android

251

4 setAudioEncoder()

This method specifies the audio encoder to be used.

5 setOutputFile()

This method configures the path to the file into which the recorded

audio is to be stored.

6 stop()

This method stops the recording process.

7 release()

This method should be called when the recorder instance is needed.

Example:

This example provides demonstration of MediaRecorder class to capture audio and

then MediaPlayer class to play that recorded audio.

To experiment with this example, you need to run this on an actual device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as AudioCapture under a package com.example.audiocapture. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add AudioCapture code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Modify res/values/string.xml file and add necessary string

components.

5 Modify AndroidManifest.xml to add necessary permissions.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Android

252

Here is the content of src/com.example.audiocapture/MainActivity.java

package com.example.audiocapture;

import java.io.File;

import java.io.IOException;

import android.media.MediaPlayer;

import android.media.MediaRecorder;

import android.os.Bundle;

import android.os.Environment;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends Activity {

 private MediaRecorder myAudioRecorder;

 private String outputFile = null;

 private Button start,stop,play;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 start = (Button)findViewById(R.id.button1);

 stop = (Button)findViewById(R.id.button2);

 play = (Button)findViewById(R.id.button3);

 stop.setEnabled(false);

 play.setEnabled(false);

 outputFile = Environment.getExternalStorageDirectory().

 getAbsolutePath() + "/myrecording.3gp";;

Android

253

 myAudioRecorder = new MediaRecorder();

 myAudioRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

myAudioRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GP

P);

 myAudioRecorder.setAudioEncoder(MediaRecorder.OutputFormat.AMR_NB);

 myAudioRecorder.setOutputFile(outputFile);

 }

 public void start(View view){

 try {

 myAudioRecorder.prepare();

 myAudioRecorder.start();

 } catch (IllegalStateException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 start.setEnabled(false);

 stop.setEnabled(true);

 Toast.makeText(getApplicationContext(), "Recording started",

Toast.LENGTH_LONG).show();

 }

 public void stop(View view){

 myAudioRecorder.stop();

 myAudioRecorder.release();

 myAudioRecorder = null;

 stop.setEnabled(false);

 play.setEnabled(true);

Android

254

 Toast.makeText(getApplicationContext(), "Audio recorded

successfully",

 Toast.LENGTH_LONG).show();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void play(View view) throws IllegalArgumentException,

 SecurityException, IllegalStateException, IOException{

 MediaPlayer m = new MediaPlayer();

 m.setDataSource(outputFile);

 m.prepare();

 m.start();

 Toast.makeText(getApplicationContext(), "Playing audio",

 Toast.LENGTH_LONG).show();

 }

}

Here is the content of activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

Android

255

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentRight="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="32dp"

 android:text="@string/Recording"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="100dp"

 android:layout_height="100dp"

 android:layout_below="@+id/textView1"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="37dp"

 android:scaleType="fitXY"

 android:src="@android:drawable/presence_audio_online" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/imageView1"

 android:layout_marginTop="67dp"

 android:layout_toLeftOf="@+id/imageView1"

 android:onClick="start"

 android:text="@string/start" />

 <Button

Android

256

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/button1"

 android:layout_alignBottom="@+id/button1"

 android:layout_alignRight="@+id/textView1"

 android:layout_marginRight="40dp"

 android:onClick="stop"

 android:text="@string/stop" />

 <Button

 android:id="@+id/button3"

 style="?android:attr/buttonStyleSmall"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/button2"

 android:layout_centerHorizontal="true"

 android:onClick="play"

 android:text="@string/play" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">AudioCapture</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="Recording">Android Audio Recording Application</string>

 <string name="start">start</string>

 <string name="stop">stop</string>

 <string name="play">play</string>

Android

257

</resources>

Here is the content of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.audiocapture"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="10"

 android:targetSdkVersion="17" />

 <uses-permission

 android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.audiocapture.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

258

Let's try to run your AndroidCapture application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

259

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

260

Now by default you will see that the stop and play buttons are disabled. Just

press the start button and your application will start recording the audio. It will

display the following screen:

Android

261

Now just press stop button and it will save the recorded audio to external sd

card. When you click on stop button, the following screen would appear:

Android

262

Now just press the play button and and recorded audio will just start playing on

the device. The following message appears when you click on play button:

Android

263

You can easily control your ringer volume and ringer profile i.e. (silent, vibrate,

loud etc.) in android. Android provides AudioManager class that provides access

to these controls.

In order to use AndroidManager class, you have to first create an object of

AudioManager class by calling the getSystemService() method. Its syntax is

given below.

private AudioManager myAudioManager;

myAudioManager = (AudioManager)getSystemService(Context.AUDIO_SERVICE);

Once you instantiate the object of AudioManager class, you can

use setRingerMode method to set the audio or ringer profile of your device. Its

syntax is given below.

myAudioManager.setRingerMode(AudioManager.RINGER_MODE_VIBRATE);

The method setRingerMode takes an integer number as a parameter. For each

mode, an integer number is assigned that will differentiate between different

modes. The possible modes are.

Sr.No Mode & Description

1 RINGER_MODE_VIBRATE

This Mode sets the device at vibrate mode.

2 RINGER_MODE_NORMAL

This Mode sets the device at normal (loud) mode.

3 RINGER_MODE_SILENT

This Mode sets the device at silent mode.

Once you have set the mode, you can call the getRingerMode() method to get

the set state of the system. Its syntax is given below.

int mod = myAudioManager.getRingerMode();

29. AUDIO MANAGER

Android

264

Apart from the getRingerMode method, there are other methods available in the

AudioManager class to control the volume and other modes. They are listed

below:

Sr.No Method & description

1 adjustVolume(int direction, int flags)

This method adjusts the volume of the most relevant stream.

2 getMode()

This method returns the current audio mode.

3 getStreamMaxVolume(int streamType)

This method returns the maximum volume index for a particular

stream.

4 getStreamVolume(int streamType)

This method returns the current volume index for a particular stream.

5 isMusicActive()

This method checks whether any music is active.

6 startBluetoothSco()

This method Starts bluetooth SCO audio connection.

7 stopBluetoothSco()

This method stops bluetooth SCO audio connection.

Example:

The below example demonstrates the use of AudioManager class. It creates a basic

application that allows you to set different ringer modes for your device.

To experiment with this example, you need to run this on an actual device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as AudioManager under a package com.example.audiomanager. While

Android

265

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add AudioManager code.

3 Modify layout XML file res/layout/activity_main.xml to add any GUI

component if required.

4 Modify res/values/string.xml file and add necessary string

components.

5 Modify AndroidManifest.xml to add necessary permissions.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.audiomanager/MainActivity.java

package com.example.audiomanager;

import android.media.AudioManager;

import android.os.Bundle;

import android.app.Activity;

import android.content.Context;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends Activity {

 private Button Vibrate, Ring, Silent, Mode;

 private TextView Status;

 private AudioManager myAudioManager;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

Android

266

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Vibrate = (Button)findViewById(R.id.button2);

 Ring = (Button)findViewById(R.id.button4);

 Silent = (Button)findViewById(R.id.button3);

 Mode = (Button)findViewById(R.id.button1);

 Status = (TextView)findViewById(R.id.textView2);

 myAudioManager =

 (AudioManager)getSystemService(Context.AUDIO_SERVICE);

 }

 public void vibrate(View view){

 myAudioManager.setRingerMode(AudioManager.RINGER_MODE_VIBRATE);

 }

 public void ring(View view){

 myAudioManager.setRingerMode(AudioManager.RINGER_MODE_NORMAL);

 }

 public void silent(View view){

 myAudioManager.setRingerMode(AudioManager.RINGER_MODE_SILENT);

 }

 public void mode(View view){

 int mod = myAudioManager.getRingerMode();

 if(mod == AudioManager.RINGER_MODE_NORMAL){

 Status.setText("Current Status: Ring");

 }

 else if(mod == AudioManager.RINGER_MODE_SILENT){

 Status.setText("Current Status: Silent");

 }

 else if(mod == AudioManager.RINGER_MODE_VIBRATE){

 Status.setText("Current Status: Vibrate");

Android

267

 }

 else{

 }

}

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the content of activity_main.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="25dp"

Android

268

 android:text="@string/audio"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/button3"

 android:layout_alignBottom="@+id/button3"

 android:layout_alignRight="@+id/textView1"

 android:onClick="vibrate"

 android:text="@string/Vibrate" />

 <Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentLeft="true"

 android:layout_marginBottom="144dp"

 android:layout_marginLeft="40dp"

 android:layout_toLeftOf="@+id/button2"

 android:onClick="silent"

 android:text="@string/Silent" />

 <Button

 android:id="@+id/button4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/button1"

 android:layout_alignBottom="@+id/button1"

 android:layout_toRightOf="@+id/button1"

 android:onClick="ring"

 android:text="@string/Ring" />

Android

269

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/button2"

 android:layout_alignLeft="@+id/button3"

 android:layout_marginBottom="15dp"

 android:onClick="mode"

 android:text="@string/Mode" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/textView1"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="46dp"

 android:text="@string/Status"

 android:textAppearance="?android:attr/textAppearanceMedium" />

</RelativeLayout>

Here is the content of Strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">AudioManager</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="audio">Set Audio Profiles</string>

 <string name="Ring">Ring</string>

 <string name="Vibrate">Vibrate</string>

 <string name="Silent">Silent</string>

Android

270

 <string name="Mode">Current Mode</string>

 <string name="Status">Current Status</string>

</resources>

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.audiomanager"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.audiomanager.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

</application>

</manifest>

Android

271

Let's try to run your Androidmanager application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

272

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

273

Now just select the ring button and then press the current mode button to see

that if it’s status has been set.

Android

274

Now press the silent button and then press the current mode button to see

that if it is set or not. It will display the following screen:

Android

275

Now press the vibrate button and then press the current mode button to see

that if it is set or not. It will display the following screen:

Android

276

If you want to get suggestions, when you type in an editable text field, you can

do this via AutoCompleteTextView. It provides suggestions automatically when

the user is typing. The list of suggestions is displayed in a drop down menu from

which the user can choose an item to replace the content of the edit box.

In order to use AutoCompleteTextView you have to first create an

AutoCompletTextView Field in the xml. Its syntax is given below.

<AutoCompleteTextView

 android:id="@+id/autoCompleteTextView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="65dp"

 android:ems="10" >

After that, you have to get a reference of this textview in java. Its syntax is

given below.

private AutoCompleteTextView actv;

actv = (AutoCompleteTextView) findViewById(R.id.autoCompleteTextView1);

Thenext thing you need to do is to specify the list of suggestion items to be

displayed. You can specify the list items as a string array in java or in

strings.xml. Its syntax is given below.

 String[] countries = getResources().

 getStringArray(R.array.list_of_countries);

 ArrayAdapter adapter = new ArrayAdapter

 (this,android.R.layout.simple_list_item_1,countries);

 actv.setAdapter(adapter);

The array adapter class is responsible for displaying the data as list in the

suggestion box of the text field. The setAdapter method is used to set the

adapter of the autoCompleteTextView. Apart from these methods, the other

methods of AutoCompelte are listed below.

30. AUTOCOMPLETE

Android

277

Sr.No Method & description

1 getAdapter()

This method returns a filterable list adapter used for auto completion.

2 getCompletionHint()

This method returns optional hint text displayed at the bottom of the

matching list.

3 getDropDownAnchor()

This method returns the id for the view that the auto-complete drop

down list is anchored to.

4 getListSelection()

This method returns the position of the dropdown view selection, if

there is one.

5 isPopupShowing()

This method indicates whether the popup menu is showing.

6 setText(CharSequence text, boolean filter)

This method sets text except that it can disable filtering.

7 showDropDown()

This method displays the drop down on screen.

Example:

The below example demonstrates the use of AutoCompleteTextView class. It

creates a basic application that allows you to type in and it displays suggestions

on your device.

To experiment with this example, you need to run this on an actual device or in

an emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

Android

278

as AutoComplete under a package com.example.autocomplete. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add AutoCompleteTextView code.

3 Modify layout XML file res/layout/activity_main.xml to add any GUI

component if required.

4 Modify res/values/string.xml file and add necessary string

components.

5 Modify AndroidManifest.xml to add necessary permissions.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.autocomplete/MainActivity.java

package com.example.autocomplete;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

import android.widget.MultiAutoCompleteTextView;

public class MainActivity extends Activity {

 private AutoCompleteTextView actv;

 private MultiAutoCompleteTextView mactv;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Android

279

 setContentView(R.layout.activity_main);

 String[] countries = getResources().

 getStringArray(R.array.list_of_countries);

 ArrayAdapter adapter = new ArrayAdapter

 (this,android.R.layout.simple_list_item_1,countries);

 actv = (AutoCompleteTextView)

 findViewById(R.id.autoCompleteTextView1);

 mactv = (MultiAutoCompleteTextView) findViewById

 (R.id.multiAutoCompleteTextView1);

 actv.setAdapter(adapter);

 mactv.setAdapter(adapter);

 mactv.setTokenizer(new MultiAutoCompleteTextView.CommaTokenizer());

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the content of activity_main.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

Android

280

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <AutoCompleteTextView

 android:id="@+id/autoCompleteTextView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="65dp"

 android:ems="10" >

 <requestFocus />

 </AutoCompleteTextView>

 <MultiAutoCompleteTextView

 android:id="@+id/multiAutoCompleteTextView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/autoCompleteTextView1"

 android:layout_centerVertical="true"

 android:ems="10" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

281

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:text="@string/auto_complete"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/multiAutoCompleteTextView1"

 android:layout_alignParentLeft="true"

 android:layout_marginBottom="19dp"

 android:text="@string/multi_auto_complete"

 android:textAppearance="?android:attr/textAppearanceMedium" />

</RelativeLayout>

Here is the content of Strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">AutoComplete</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="auto_complete">AutoComplete</string>

 <string name="multi_auto_complete">Multi AutoComplete</string>

 <string-array name="list_of_countries">

 <item >USA</item>

 <item >Uk</item>

 <item >Canada</item>

 <item >Australia</item>

 <item >France</item>

 <item >Italy</item>

 <item >China</item>

Android

282

 <item >Japan</item>

 <item >Spain</item>

 </string-array>

</resources>

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.autocomplete"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.autocomplete.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

Android

283

</manifest>

Let's try to run your Androidmanager application. We assume, you have

connected your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Ecclipse will install this application in your AVD and your AVD will display

following screen.

Android

284

Now just type in the text view to see suggestions of the country. As we type two

letters which are ca, it shows us suggestion of Canada:

Android

285

The multiAutoCompleteTextView demonstrates suggestions for not only a word

but for whole text. As after writing first word, when we start writing the second

word, it displays the suggestions. This can be shown in the picture below.

Android

286

There are some practices that you can follow while developing android

application. These are suggested by the android itself and they keep on

improving with respect to time.

These best practices include interaction design features, performance, security

and privacy, compatibility, testing, distributing and monetizing tips. They are

narrowed down and are listed as below.

Best Practices - User input

Every text field is intended for a different job. For example, some text-fields are

for text and some are for numbers. If it is for numbers then it is better to display

the numeric keypad when that text-field is focused. Its syntax is.

<EditText

 android:id="@+id/phone"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:inputType="phone" />

Other than that if your field is for password, then it must show a password hint,

so that the user can easily remember the password. It can be achieved as:

<EditText

 android:id="@+id/password"

 android:hint="@string/password_hint"

 android:inputType="textPassword" />

Best Practices - Background jobs

There are certain jobs in an application that are run in the application

background. Their job might be to fetch some thing from the internet, playing

music etc. It is recommended that the long awaiting tasks should not be done in

the UI thread and rather in the background by services or AsyncTask.

AsyncTask Vs Services.

Both are used for doing background tasks, but the service is not affected by

most user interface life cycle events, so it continues to run in circumstances that

would shut down an AsyncTask.

31. BEST PRACTICES

Android

287

Best Practices - Performance

Your application performance should be up to the mark. But it should perform

differently; not on the front end, but on the back end when the device is

connected to a power source or charging. Charging could be from USB and from

wire cable.

When your device is charging itself, it is recommended to update your

application settings if any, such as maximizing your refresh rate whenever the

device is connected. It can be done as follows:

IntentFilter ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);

Intent batteryStatus = context.registerReceiver(null, ifilter);

// Are we charging / charged? Full or charging.

int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);

// How are we charging? From AC or USB.

int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED,

-1);

Best Practices - Security and privacy

It is very important that your application should be secure. Not only the

application, but the user data and the application data should also be secured.

The security can be increased by the following factors:

 Use internal storage rather than external for storing applications files

 Use content providers wherever possible

 Use SSl when connecting to the web

 Use appropriate permissions for accessing different functionalities of

device.

Example:

The below example demonstrates some of the best practices you should follow when

developing android application. It creates a basic application that allows you to

specify how to use text fields and how to increase performance by checking the

charging status of the phone.

To experiment with this example, you need to run this on an actual device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as BestPractices under a package com.example.autocomplete. While

creating this project, make sure you Target SDK and Compile With at

Android

288

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add the code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Modify res/values/string.xml file and add necessary string

components.

5 Modify AndroidManifest.xml to add necessary permissions.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.bestpractices/MainActivity.java

package com.example.bestpractices;

import android.os.BatteryManager;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.content.IntentFilter;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends Activity {

 private Button Check;

 private BatteryManager battery;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Android

289

 setContentView(R.layout.activity_main);

 Check = (Button)findViewById(R.id.button1);

 }

 public void check(View view){

 IntentFilter ifilter = new

 IntentFilter(Intent.ACTION_BATTERY_CHANGED);

 Intent batteryStatus = registerReceiver(null, ifilter);

 int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS,

 -1);

 boolean isCharging = status ==

 BatteryManager.BATTERY_STATUS_CHARGING ||

 status == BatteryManager.BATTERY_STATUS_FULL;

 // How are we charging?

 int chargePlug =

 batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED,

 -1);

 boolean usbCharge = chargePlug ==

 BatteryManager.BATTERY_PLUGGED_USB;

 boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;

 if(usbCharge){

 Toast.makeText(getApplicationContext(),"Mobile is

 charging on USB",Toast.LENGTH_LONG).show();

 }

 else{

 Toast.makeText(getApplicationContext(),"Mobile is

 charging on AC",Toast.LENGTH_LONG).show();

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

Android

290

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the content of activity_main.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="22dp"

 android:layout_marginTop="20dp"

 android:text="@string/username"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/message"

 android:layout_width="wrap_content"

Android

291

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView1"

 android:layout_below="@+id/textView1"

 android:ems="10"

 android:inputType="textCapSentences|textAutoCorrect" >

 <requestFocus />

</EditText>

 <EditText

 android:id="@+id/password"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView2"

 android:layout_below="@+id/textView2"

 android:layout_marginTop="34dp"

 android:ems="10"

 android:hint="@string/password_hint"

 android:inputType="textPassword" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/textView1"

 android:layout_below="@+id/message"

 android:layout_marginTop="50dp"

 android:text="@string/password"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

292

 android:layout_below="@+id/password"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="34dp"

 android:onClick="check"

 android:text="@string/check" />

</RelativeLayout>

Here is the content of Strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">BestPractices</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="username">Username</string>

 <string name="password">Password</string>

 <string name="password_hint">Hello world!</string>

 <string name="check">Charging check</string>

</resources>

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.bestpractices"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

Android

293

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.bestpractices.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your BestPractices application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

294

Android

295

Select your mobile device as an option and then check your mobile device which

will display following screen.

Android

296

Now jsut type on the username field and you will see the built in android

suggestions from the dictionary will start coming up. This is shown below:

Android

297

Now you will see the hint in the password field. It would disappear as soon as

you start writing in the field. It is shown below.

Android

298

In the end, just connect your device to AC cable or USB cable and press on

charging check button. In our case, we connect it with a PC via USB cable so it

shows the following message:

Android

299

Among many ways, Bluetooth is a way to send or receive data between two

different devices. Android platform includes support for the Bluetooth framework

that allows a device to wirelessly exchange data with other Bluetooth devices.

Android provides Bluetooth API to perform these different operations.

 Scan for other Bluetooth devices

 Get a list of paired devices

 Connect to other devices through service discovery

Android provides BluetoothAdapter class to communicate with Bluetooth. Create

an object of this calling by calling the static method getDefaultAdapter(). Its

syntax is given below.

private BluetoothAdapter BA;

BA = BluetoothAdapter.getDefaultAdapter();

In order to enable the Bluetooth of your device, call the intent with the following

Bluetooth constant ACTION_REQUEST_ENABLE. Its syntax is.

Intent turnOn = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

startActivityForResult(turnOn, 0);

Apart from this constant, there are other constant provided by the API, that

supports different tasks. They are listed below:

Sr.No Constant & description

1 ACTION_REQUEST_DISCOVERABLE

This constant is used to turn on discovering of Bluetooth.

2 ACTION_STATE_CHANGED

This constant will notify that Bluetooth state has been changed.

3 ACTION_FOUND

This constant is used for receiving information about each device that

is discovered.

Once you enable the Bluetooth, you can get a list of paired devices by calling

getBondedDevices() method. It returns a set of bluetooth devices. Its syntax is.

32. BLUETOOTH

Android

300

private Set<BluetoothDevice>pairedDevices;

pairedDevices = BA.getBondedDevices();

Apart form the pairedDevices, there are other methods in the API that gives

more control over Bluetooth. They are listed below.

Sr.No Method & description

1 enable()

This method enables the adapter if not enabled.

2 isEnabled()

This method returns true if adapter is enabled.

3 disable()

This method disables the adapter.

4 getName()

This method returns the name of the Bluetooth adapter.

5 setName(String name)

This method changes the Bluetooth name.

6 getState()

This method returns the current state of the Bluetooth Adapter.

7 startDiscovery()

This method starts the discovery process of the Bluetooth for 120

seconds.

Example:

This example provides demonstration of BluetoothAdapter class to manipulate

Bluetooth and show list of paired devices by the Bluetooth.

To experiment with this example, you need to run this on an actual device.

Android

301

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as AudioCapture under a package com.example.audiocapture. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add the code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Modify res/values/string.xml file and add necessary string

components.

5 Modify AndroidManifest.xml to add necessary permissions.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.bluetooth/MainActivity.java

package com.example.bluetooth;

import java.util.ArrayList;

import java.util.List;

import java.util.Set;

import android.os.Bundle;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.Intent;

import android.view.Menu;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.Button;

Android

302

import android.widget.ListAdapter;

import android.widget.ListView;

import android.widget.Toast;

public class MainActivity extends Activity {

 private Button On,Off,Visible,list;

 private BluetoothAdapter BA;

 private Set<BluetoothDevice>pairedDevices;

 private ListView lv;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 On = (Button)findViewById(R.id.button1);

 Off = (Button)findViewById(R.id.button2);

 Visible = (Button)findViewById(R.id.button3);

 list = (Button)findViewById(R.id.button4);

 lv = (ListView)findViewById(R.id.listView1);

 BA = BluetoothAdapter.getDefaultAdapter();

 }

 public void on(View view){

 if (!BA.isEnabled()) {

 Intent turnOn = new

 Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(turnOn, 0);

 Toast.makeText(getApplicationContext(),"Turned on"

 ,Toast.LENGTH_LONG).show();

 }

 else{

 Toast.makeText(getApplicationContext(),"Already on",

Android

303

 Toast.LENGTH_LONG).show();

 }

 }

 public void list(View view){

 pairedDevices = BA.getBondedDevices();

 ArrayList list = new ArrayList();

 for(BluetoothDevice bt : pairedDevices)

 list.add(bt.getName());

 Toast.makeText(getApplicationContext(),"Showing Paired Devices",

 Toast.LENGTH_SHORT).show();

 final ArrayAdapter adapter = new ArrayAdapter

 (this,android.R.layout.simple_list_item_1, list);

 lv.setAdapter(adapter);

 }

 public void off(View view){

 BA.disable();

 Toast.makeText(getApplicationContext(),"Turned off" ,

 Toast.LENGTH_LONG).show();

 }

 public void visible(View view){

 Intent getVisible = new Intent(BluetoothAdapter.

 ACTION_REQUEST_DISCOVERABLE);

 startActivityForResult(getVisible, 0);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

Android

304

 }

}

Here is the content of activity_main.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ScrollView

 android:id="@+id/scrollView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentLeft="true"

 android:layout_alignParentRight="true"

 android:layout_alignParentTop="true" >

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

305

 android:text="@string/app_name"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="on"

 android:text="@string/on" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="visible"

 android:text="@string/Visible" />

 <Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="list"

 android:text="@string/List" />

 <Button

 android:id="@+id/button4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="off"

 android:text="@string/off" />

 <ListView

 android:id="@+id/listView1"

 android:layout_width="match_parent"

Android

306

 android:layout_height="wrap_content"

 android:visibility="visible" >

 </ListView>

 </LinearLayout>

</ScrollView>

</RelativeLayout>

Here is the content of Strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Bluetooth</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="on">Turn On</string>

 <string name="off">Turn Off</string>

 <string name="Visible">Get Visible</string>

 <string name="List">List Devices</string>

</resources>

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.bluetooth"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

Android

307

 <uses-permission android:name="android.permission.BLUETOOTH"/>

 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.bluetooth.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your AndroidCapture application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

308

Android

309

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

310

Now select Turn On to turn on the bluetooth. But as you select it, your

Bluetooth will not be turned on. In fact, it will ask your permission to enable the

Bluetooth.

Android

311

Now just select the Get Visible button to turn on your visibility. The following

screen would appear asking your permission to turn on discovery for 120

seconds.

Android

312

Now just select the List Devices option. It will list down the paired devices in the

list view. In our case, we have only one paired device. It is shown below:

Android

313

Now just select the Turn off button to switch off the Bluetooth. Following

message would appear when you switch off the bluetooth indicating the

successful switching off of Bluetooth.

Android

314

These are the following two ways, in which you can use camera in your

application

 Using existing android camera application in our application

 Directly using Camera API provided by android in our application

Using existing android camera application in our application

You will use MediaStore.ACTION_IMAGE_CAPTURE to launch an existing camera

application installed on your phone. Its syntax is given below:

Intent intent = new

Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);

Apart from the above, there are other available Intents provided by MediaStore.

They are listed as follows:

Sr.No Intent type and description

1 ACTION_IMAGE_CAPTURE_SECURE

It returns the image captured from the camera, when the device is

secured.

2 ACTION_VIDEO_CAPTURE

It calls the existing video application in android to capture video.

3 EXTRA_SCREEN_ORIENTATION

It is used to set the orientation of the screen to vertical or landscape.

4 EXTRA_FULL_SCREEN

It is used to control the user interface of the ViewImage.

5 INTENT_ACTION_VIDEO_CAMERA

This intent is used to launch the camera in the video mode.

6 EXTRA_SIZE_LIMIT

33. CAMERA

Android

315

It is used to specify the size limit of video or image capture size.

Now you will use the function startActivityForResult() to launch this activity and

wait for its result. Its syntax is given below:

startActivityForResult(intent,0)

This method has been defined in the activity class. We are calling it from main

activity. There are methods defined in the activity class that does the same job,

but used when you are not calling from the activity but from somewhere else.

They are listed below:

Sr.No Activity function description

1 startActivityForResult(Intent intent, int requestCode, Bundle

options)

It starts an activity, but can take extra bundle of options with it.

2 startActivityFromChild(Activity child, Intent intent, int

requestCode)

It launches the activity when your activity is child of any other activity.

3 startActivityFromChild(Activity child, Intent intent, int

requestCode, Bundle options)

It work same as above, but it can take extra values in the shape of

bundle with it.

4 startActivityFromFragment(Fragment fragment, Intent intent,

int requestCode)

It launches activity from the fragment you are currently inside.

5 startActivityFromFragment(Fragment fragment, Intent intent,

int requestCode, Bundle options)

It not only launches the activity from the fragment, but can take extra

values with it.

No matter which function you used to launch the activity, they all return the

result. The result can be obtained by overriding the function onActivityResult

Android

316

Example:

Here is an example that shows how to launch the exisitng camera application to

capture an image and display the result in the form of bitmap.

To experiment with this example, you need to run this on an actual device on which

camera is supported.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Camera under a package com.example.camera. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add intent code to launch the

activity and result method to receive the output.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required. Here we add only imageView and a textView.

4 Modify res/values/strings.xml to define required constant values.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.camera/MainActivity.java.

package com.example.camera;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.graphics.Bitmap;

import android.view.Menu;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.ImageView;

Android

317

public class MainActivity extends Activity {

ImageView imgFavorite;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 imgFavorite = (ImageView)findViewById(R.id.imageView1);

 imgFavorite.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 open();

 }

 });

 }

 public void open(){

 Intent intent = new

 Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);

 startActivityForResult(intent, 0);

 }

 @Override

 protected void onActivityResult(int requestCode, int resultCode,

 Intent data) {

 // TODO Auto-generated method stub

 super.onActivityResult(requestCode, resultCode, data);

 Bitmap bp = (Bitmap) data.getExtras().get("data");

 imgFavorite.setImageBitmap(bp);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

Android

318

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following will be the content of res/layout/activity_main.xml file:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity">

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_marginLeft="34dp"

 android:layout_marginTop="36dp"

 android:contentDescription="@string/hello_world"

 android:src="@drawable/ic_launcher" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_alignRight="@+id/imageView1"

 android:text="@string/tap"

Android

319

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Following will be the content of res/values/strings.xml to define one new

constants

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Camera</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="tap">Tap the image to open the camera!!</string>

</resources>

Following is the default content of AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.camera"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.camera.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

Android

320

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your Camera application. We assume, you have connected your

actual Android Mobile device with your computer. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Before starting your application, Eclipse will display following window to select

an option where you want to run your Android application.

Android

321

Select your mobile device as an option and then check your mobile device which

will display the following screen:

Android

322

Now just tap on the image of android icon and the camera will be opened. Just

capture a picture. After capturing it, two buttons will appear asking you to

discard it or to keep it:

Android

323

Just press the tic (green) button and you will be brought back to your application

with the captured image in place of android icon.

Directly using Camera API Provided by Android in our
Application

We will be using the camera API to integrate the camera in our application.

First you will need to intialize the camera object using the static method

provided by the api called Camera.open. Its syntax is:

Camera object = null;

object = Camera.open();

Apart from the above function, there are other functions provided by the Camera

class that are listed below:

Sr.No Method & Description

Android

324

1 getCameraInfo(int cameraId, Camera.CameraInfo cameraInfo)

It returns the information about a particular camera.

2 getNumberOfCameras()

It returns an integer number defining of cameras availaible on device.

3 lock()

It is used to lock the camera, so no other application can access it.

4 release()

It is used to release the lock on camera, so other applications can

access it.

5 open(int cameraId)

It is used to open particular camera when multiple cameras are

supported.

6 enableShutterSound(boolean enabled)

It is used to enable/disable default shutter sound of image capture.

Now you need to make a seperate class and extend it with SurfaceView and

implement SurfaceHolder interface.

The two classes that have been used have the following purpose:

Class Description

Camera It is used to control the camera and take images or capture

video from the camera.

SurfaceView This class is used to present a live camera preview to the user.

You have to call the preview method of the camera class to start the preview of

the camera to the user.

public class ShowCamera extends SurfaceView implements
SurfaceHolder.Callback {

Android

325

 private Camera theCamera;

 public void surfaceCreated(SurfaceHolder holder) {

 theCamera.setPreviewDisplay(holder);

 theCamera.startPreview();

 }

 public void surfaceChanged(SurfaceHolder arg0, int arg1, int arg2, int

 arg3){

 }

 public void surfaceDestroyed(SurfaceHolder arg0) {

 }

}

Apart from the preview there are other options of the camera that can be set

using the other functions provided by the Camera API.

Sr.No Method & Description

1 startFaceDetection()

This function starts the face detection in the camera.

2 stopFaceDetection()

It is used to stop the face detection which is enabled by the above

function.

3 startSmoothZoom(int value)

It takes an integer value and zoom the camera very smoothly to that

value.

4 stopSmoothZoom()

It is used to stop the zoom of the camera.

5 stopPreview()

It is used to stop the preview of the camera to the user.

6 takePicture(Camera.ShutterCallback shutter,

Android

326

Camera.PictureCallback raw, Camera.PictureCallback jpeg)

It is used to enable/disable default shutter sound of image capture.

Example:

Following example demonstrates the usage of the camera API in the application.

To experiment with this example, you will need actual Mobile device equipped with

latest Android OS, because camera is not supported by the emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Camera under a package com.example.camera1. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add the respective code of camera

and get references to the XML components.

3 Create a new ShowCamera.java file to extend it with SurfaceView and

implement the SurfaceHolder interface.

4 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required. Here we add only FrameView and a button and

an ImageView.

5 Modify res/values/strings.xml to define required constant values.

6 Modify AndroidManifest.xml as shown below to add the necessary

permissions for camera.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.camera1/MainActivity.java.

package com.example.camera1;

Android

327

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.hardware.Camera;

import android.hardware.Camera.PictureCallback;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.FrameLayout;

import android.widget.ImageView;

import android.widget.Toast;

public class MainActivity extends Activity {

 private Camera cameraObject;

 private ShowCamera showCamera;

 private ImageView pic;

 public static Camera isCameraAvailiable(){

 Camera object = null;

 try {

 object = Camera.open();

 }

 catch (Exception e){

 }

 return object;

 }

 private PictureCallback capturedIt = new PictureCallback() {

 @Override

 public void onPictureTaken(byte[] data, Camera camera) {

Android

328

 Bitmap bitmap = BitmapFactory.decodeByteArray(data , 0, data

 .length);

 if(bitmap==null){

 Toast.makeText(getApplicationContext(), "not taken",

 Toast.LENGTH_SHORT).show();

 }

 else

 {

 Toast.makeText(getApplicationContext(), "taken",

 Toast.LENGTH_SHORT).show();

 }

 cameraObject.release();

 }

};

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 pic = (ImageView)findViewById(R.id.imageView1);

 cameraObject = isCameraAvailiable();

 showCamera = new ShowCamera(this, cameraObject);

 FrameLayout preview = (FrameLayout)

 findViewById(R.id.camera_preview);

 preview.addView(showCamera);

 }

 public void snapIt(View view){

 cameraObject.takePicture(null, null, capturedIt);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

Android

329

 }

}

Create the new java file called as

src/com.example.camera1/ShowCamera.java. and add the following code:

package com.example.camera1;

import java.io.IOException;

import android.content.Context;

import android.hardware.Camera;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

public class ShowCamera extends SurfaceView implements

SurfaceHolder.Callback {

 private SurfaceHolder holdMe;

 private Camera theCamera;

 public ShowCamera(Context context,Camera camera) {

 super(context);

 theCamera = camera;

 holdMe = getHolder();

 holdMe.addCallback(this);

 }

 @Override

 public void surfaceChanged(SurfaceHolder arg0, int arg1, int arg2, int

 arg3) {

 }

 @Override

 public void surfaceCreated(SurfaceHolder holder) {

 try {

Android

330

 theCamera.setPreviewDisplay(holder);

 theCamera.startPreview();

 } catch (IOException e) {

 }

 }

 @Override

 public void surfaceDestroyed(SurfaceHolder arg0) {

 }

}

Modify the content of the res/layout/activity_main.xml :

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="horizontal" >

 <LinearLayout

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_weight="0.30"

 android:orientation="vertical" >

 <FrameLayout

 android:id="@+id/camera_preview"

 android:layout_width="fill_parent"

 android:layout_height="199dp" />

 <Button

 android:id="@+id/button_capture"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

Android

331

 android:onClick="snapIt"

 android:text="@string/Capture" />

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:scaleType="fitXY"

 android:src="@drawable/ic_launcher" />

 </LinearLayout>

< /LinearLayout>

Modify the content of the res/values/string.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Camera1</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="Capture">Capture</string>

</resources>

Modify the content of the AndroidManifest.xml and add the necessary

permissions as shown below.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.camera1"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

Android

332

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.CAMERA"/>

 <uses-feature android:name="android.hardware.camera" />

 <uses-feature android:name="android.hardware.camera.autofocus" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.camera1.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your SendSMSDemo application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

333

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

334

The camera would start showing its preview in the upper half panel. Just click

the capture button. You can now either store the captured image, upload it to

the web or either discard it.

Android

335

Android provides the clipboard framework for copying and pasting different types

of data. The data could be text, images, binary stream data or other complex

data types.

Android provides the library of ClipboardManager and ClipData and ClipData.item

to use the copying and pasting framework. To use clipboard framework, you

need to put data into clip object, and then put that object into system wide

clipboard.

In order to use clipboard, you need to instantiate an object of ClipboardManager

by calling the getSystemService() method. Its syntax is given below:

ClipboardManager myClipboard;

myClipboard = (ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

Copying data

The next thing you need to do is to instantiate the ClipData object by calling the

respective type of data method of the ClipData class. In case of text data,

the newPlainText method will be called. After that you have to set that data as

the clip of the Clipbaoard Manager object. Its syntax is given below:

ClipData myClip;

String text = "hello world";

myClip = ClipData.newPlainText("text", text);

myClipboard.setPrimaryClip(myClip);

The ClipData object can take these three form and following functions are used

to create those forms.

Sr.No ClipData Form & Method

1 Text

newPlainText(label, text)

Returns a ClipData object whose single ClipData.Item object contains

a text string.

2 URI

34. CLIPBOARD

Android

336

newUri(resolver, label, URI)

Returns a ClipData object whose single ClipData.Item object contains

a URI.

3 Intent

newIntent(label, intent)

Returns a ClipData object whose single ClipData.Item object contains

an Intent.

Pasting data

In order to paste the data, we will first get the clip by calling

the getPrimaryClip() method. And from that click we will get the item in

ClipData.Item object. And from the object we will get the data. Its syntax is

given below:

ClipData abc = myClipboard.getPrimaryClip();

ClipData.Item item = abc.getItemAt(0);

String text = item.getText().toString();

Apart from these methods, there are other methods provided by the

ClipboardManager class for managing clipboard framework. These methods are

listed below:

Sr.No Method & description

1 getPrimaryClip()

This method just returns the current primary clip on the clipboard.

2 getPrimaryClipDescription()

This method returns a description of the current primary clip on the

clipboard but not a copy of its data.

3 hasPrimaryClip()

This method returns true if there is currently a primary clip on the

clipboard.

4 setPrimaryClip(ClipData clip)

Android

337

This method sets the current primary clip on the clipboard.

5 setText(CharSequence text)

This method can be directly used to copy text into the clipboard.

6 getText()

This method can be directly used to get the copied text from the

clipboard.

Example:

Here is an example demonstrating the use of ClipboardManager class. It creates a

basic copy paste application that allows you to copy the text and then paste it via

clipboard.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Clipboard under a package com.example.clipboard. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results

Following is the content of the modified main activity file

src/com.example.clipboard/MainActivity.java.

package com.example.clipboard;

Android

338

import android.annotation.SuppressLint;

import android.app.Activity;

import android.content.ClipData;

import android.content.ClipboardManager;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

 private ClipboardManager myClipboard;

 private ClipData myClip;

 private EditText copyField,pasteField;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myClipboard =

 (ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

 copyField = (EditText)findViewById(R.id.editText1);

 pasteField = (EditText)findViewById(R.id.editText2);

 }

 @SuppressLint("NewApi")

 public void copy(View view){

 String text = copyField.getText().toString();

 myClip = ClipData.newPlainText("text", text);

 myClipboard.setPrimaryClip(myClip);

 Toast.makeText(getApplicationContext(), "Text Copied",

Android

339

 Toast.LENGTH_SHORT).show();

 }

 @SuppressLint("NewApi")

 public void paste(View view){

 ClipData abc = myClipboard.getPrimaryClip();

 ClipData.Item item = abc.getItemAt(0);

 String text = item.getText().toString();

 pasteField.setText(text);

 Toast.makeText(getApplicationContext(), "Text Pasted",

 Toast.LENGTH_SHORT).show();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

Android

340

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="25dp"

 android:layout_marginTop="19dp"

 android:text="@string/copytext"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView1"

 android:layout_below="@+id/textView1"

 android:layout_marginTop="20dp"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText1"

 android:layout_centerVertical="true"

 android:text="@string/pastetext"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

Android

341

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText1"

 android:layout_below="@+id/editText1"

 android:layout_marginLeft="65dp"

 android:layout_marginTop="20dp"

 android:onClick="copy"

 android:text="@string/copy" />

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView2"

 android:layout_below="@+id/textView2"

 android:layout_marginTop="39dp"

 android:ems="10" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/button1"

 android:layout_below="@+id/editText2"

 android:layout_marginTop="34dp"

 android:onClick="paste"

 android:text="@string/paste" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

Android

342

 <string name="app_name">Clipboard</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="copy">Copy Text</string>

 <string name="paste">Paste Text</string>

 <string name="copytext">Text to copy</string>

 <string name="pastetext">Copied Text</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.clipboard"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.clipboard.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

Android

343

 </activity>

 </application>

</manifest>

Let's try to run our Clipboard application we just modified. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Android

344

Now just enter any text in the Text to copy field and then select the copy text

button. The following notification will be displayed which is shown below:

Android

345

Now just press the paste button, and you will see the text which is copied is now

pasted in the field of Copied Text. It is shown below:

Android

346

In android, you can define your own custom fonts for the strings in your

application. You just need to download the required font from the internet, and

then place it in assets/fonts folder.

After putting fonts in the assets folder under fonts folder, you can access it in

your java code through Typeface class. First, get the reference of the text view

in the code. Its syntax is given below:

TextView tx = (TextView)findViewById(R.id.textview1);

The next thing you need to do is to call static method of Typeface

class createFromAsset() to get your custom font from assets. Its syntax is

given below:

Typeface custom_font = Typeface.createFromAsset(getAssets(), "fonts/font

name.ttf");

The last thing you need to do is to set this custom font object to your TextView

Typeface property. You need to call setTypeface() method to do that. Its

syntax is given below:

tx.setTypeface(custom_font);

Apart from these Methods, there are other methods defined in the Typeface

class, that you can use to handle Fonts more effectively.

Sr.No Method & description

1 create(String familyName, int style)

Creates a Typeface object given a family name, and option style

information.

2 create(Typeface family, int style)

Creates a Typeface object that best matches the specified existing

Typeface and the specified Style.

3 createFromFile(String path)

Creates a new Typeface from the specified font file.

35. CUSTOM FONTS

Android

347

4 defaultFromStyle(int style)

Returns one of the default Typeface objects, based on the specified

style.

5 getStyle()

Returns the Typeface's intrinsic style attributes.

Example:

Here is an example demonstrating the use of Typeface to handle CustomFont. It

creates a basic application that displays a custom font that you have specified in

the fonts file.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as CustomFonts under a package com.example.customfonts. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Download a font from internet and put it under assets/fonts folder.

3 Modify src/MainActivity.java file to add necessary code.

4 Modify the res/layout/activity_main to add respective XML

components.

5 Modify the res/values/string.xml to add necessary string components.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.customfonts/MainActivity.java.

Android

348

package com.example.customfonts;

import android.app.Activity;

import android.graphics.Typeface;

import android.os.Bundle;

import android.view.Menu;

import android.widget.TextView;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 TextView tx = (TextView)findViewById(R.id.hello);

 Typeface custom_font = Typeface.createFromAsset(getAssets(),

 "fonts/Erika Type.ttf");

 tx.setTypeface(custom_font);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical">

Android

349

 <TextView

 android:id="@+id/hello"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="70dip"

 android:text="@string/hello_world" />

</LinearLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">CustomFonts</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.customfonts"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

Android

350

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.customfonts.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run our Custom Font application we just modified. We assume, you

had created your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Android

351

As you can see that the text that appeared on the AVD does not have a default

android font, rather it has the custom font that you have specified in the fonts

folder.

Note: You need to take care of the size and the character supported by the font,

when using custom fonts.

Android

352

Android allows you to backup your application data to remote "cloud" storage, in

order to provide a restore point for the application data and settings. You can

only backup your application data. To access the other applications data, you

need to root your phone.

In order to make a data backup application, you need to register your

application with google backup service. This has been explained in the example.

After registering, you have to specify its key in the AndroidManifest.XML

<application

 android:allowBackup="true"

 android:backupAgent="MyBackupPlace">

 <meta-data

 android:name="com.google.android.backup.api_key"

 android:value="AEdPqrEAAAAIErlxFByGgNz2ywBeQb6TsmLpp5Ksh1PW-ZSexg"

 />

</application>

Android provides BackUpAgentHelper class to handle all the operations of data

backup. To use this class, you have to extend your class with it. Its syntax is

given below:

public class MyBackUpPlace extends BackupAgentHelper {

}

The persistent data that you want to backup is in either of the two forms. Either

it could be SharedPreferences or it could be File. Android supports both types of

backup in the respective classes

of SharedPreferencesBackupHelper and FileBackupHelper.

In order to use SharedPerefernceBackupHelper, you need to instantiate its

object with the name of your sharedPreferences File. Its syntax is given below:

static final String File_Name_Of_Preferences = "myPreferences";

SharedPreferencesBackupHelper helper = new

SharedPreferencesBackupHelper(this, File_Name_Of_Preferences);

36. DATA BACKUP

Android

353

The last thing you need to do is to call addHelper method by specifying the

backup key string, and the helper object. Its syntax is given below:

addHelper(PREFS_BACKUP_KEY, helper);

The addHelper method will automatically add a helper to a given data subset to

the agent's configuration.

Apart from these methods, there are other methods defined in the

BackupAgentHelper class. They are defined below:

Sr.No Method & description

1 onBackup(ParcelFileDescriptor oldState, BackupDataOutput

data, ParcelFileDescriptor newState)

Run the backup process on each of the configured handlers.

2 onRestore(BackupDataInput data, int appVersionCode,

ParcelFileDescriptor newState)

Run the restore process on each of the configured handlers.

The methods of the SharedPreferencesBackUpHelper class are listed below.

Sr.No Method & description

1 performBackup(ParcelFileDescriptor oldState,

BackupDataOutput data, ParcelFileDescriptor newState)

Backs up the configured SharedPreferences groups.

2 restoreEntity(BackupDataInputStream data)

Restores one entity from the restore data stream to its proper shared

preferences file store.

Example:

The following example demonstrates the use of BackupAgentHelper class to create

backup of your application data.

To experiment with this example, you need to run this on an actual device or in an

emulator.

Android

354

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Backup under a package com.example.backup. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Register your application with Google backup service.

3 Modify the AndroidManifest to add respective necessary key and other

components.

4 Create backup agent class with the name you specify at

AndroidManifest.XML

5 Run the application and verify the results.

Register you android application with google backup service. To do that, visit this

link. You must agree to the terms of service, and then enter the application

package name. It is shown below:

Then click on Register with android backup service. It would give you your key,

along with your AndroidManifest code to copy. Just copy the key. It is shown

below:

Once you copy the key, you need to write it in your AndroidManifest.XML file. Its

code is given below:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

https://developer.android.com/google/backup/signup.html
https://developer.android.com/google/backup/signup.html

Android

355

 package="com.example.backup"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:backupAgent="MyBackUpPlace"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.backup.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <meta-data

 android:name="com.google.android.backup.api_key"

 android:value="AEdPqrEAAAAIErlxFByGgNz2ywBeQb6TsmLpp5Ksh1PW-

 ZSexg" />

 </application>

</manifest>

Here is the code of BackUpAgentHelper class. The name of the class should be

the same as you specified in the backupAgent tag under application in

AndroidManifest.XML

Android

356

package com.example.backup;

import android.app.backup.BackupAgentHelper;

import android.app.backup.SharedPreferencesBackupHelper;

public class MyBackUpPlace extends BackupAgentHelper {

 static final String File_Name_Of_Prefrences = "myPrefrences";

 static final String PREFS_BACKUP_KEY = "backup";

 @Override

 public void onCreate() {

 SharedPreferencesBackupHelper helper = new

 SharedPreferencesBackupHelper(this,

 File_Name_Of_Prefrences);

 addHelper(PREFS_BACKUP_KEY, helper);

}

}

Test your BackupAgent

Once you've implemented your backup agent, you can test the backup and

restore functionality with the following procedure, using bmgr.

Install your application on a suitable Android system image.

If you are using the emulator, create and use an AVD with Android 2.2 (API

Level 8).

If you are using a device, the device must be running Android 2.2 or greater and

must have built-in Google Play.

Ensure data backup is enabled

If using the emulator, you can enable backup with the following command from

your SDK tools/ path:

Android

357

adb shell bmgr enable true

If using a device, open the system Settings, select Privacy, then enable Back up

my data and Automatic restore.

Performing backup

For testing purposes, you can also make a request with the following bmgr

command:

adb shell bmgr backup your.package.name

Initiate a backup operation by typing the following command.

adb shell bmgr run

This forces the Backup Manager to perform all backup requests that are in its

queue.

Uninstall and reinstall your application

Uninstall the application with the following command:

adb uninstall your.package.name

Then reinstall the application and verify the results.

Android

358

The android developer tools lets you create interactive and powerful application

for android platform. The tools can be generally categorized into two types.

 SDK tools

 Platform tools

SDK tools

SDK tools are generally platform independent and are required no matter which

android platform you are working on. When you install the Android SDK into

your system, these tools get automatically installed. The list of SDK tools has

been given below:

Sr.No Tool & description

1 android

This tool lets you manage AVDs, projects, and the installed

components of the SDK.

2 ddms

This tool lets you debug Android applications.

3 Draw 9-Patch

This tool allows you to easily create a NinePatch graphic using a

WYSIWYG editor.

4 emulator

This tools let you test your applications without using a physical

device.

5 mksdcard

Helps you create a disk image (external sdcard storage) that you can

use with the emulator.

6 proguard

Shrinks, optimizes, and obfuscates your code by removing unused

37. DEVELOPER TOOLS

Android

359

code.

7 sqlite3

Lets you access the SQLite data files created and used by Android

applications.

8 traceview

Provides a graphical viewer for execution logs saved by your

application.

We will discuss three important tools here that are android, ddms and sqlite3.

Android

Android is a development tool that lets you perform these tasks:

 Manage Android Virtual Devices (AVD)

 Create and update Android projects

 Update your sdk with new platform add-ons and documentation

android [global options] action [action options]

DDMS

DDMS stands for Dalvik Debug Monitor Server that provides many services on

the device. The service could include message formation, call spoofing, capturing

screenshot, exploring internal threads and file systems etc.

Running DDMS

From eclipse click on Window, Open Perspective, Other ... DDMS. Or simply

look on the left most top corner and click on ddms.

How it works

In android, each application runs in its own process and each process run in the

virtual machine. Each VM exposes a unique port that a debugger can attach to.

When DDMS starts, it connects to adb. When a device is connected, a VM

monitoring service is created between adb and DDMS, which notifies DDMS

when a VM on the device is started or terminated.

Android

360

Using DDMS

You can use DDMS for many tasks. For example, here we are using it to make

sms, make call, and capture screenshot.

Making SMS

In the DDMS, select the Emulator Control tab. In the emulator control tab, click

on SMS and start typing the SMS and then the incoming number. It is shown in

the picture below.

Now click on send button, and you will see an sms notification in the emulator

window. It is shown below:

Android

361

Making Call

In the DDMS, select the Emulator Control tab. In the emulator control tab, click

on voice and then start typing the incoming number. It is shown in the picture

below:

Android

362

Now click on the call button to make a call to your emulator. It is shown below:

Android

363

Now click on hang-up in the eclipse window to terminate the call.

The fake sms and call can be viewed from the notification by just dragging the

notification window to the center using mouse. It is shown below:

Capturing ScreenShot

You can also capture screenshot of your emulator. For this look for the camera

icon on the right side under Devices tab. Just point your mouse over it and

select it.

As soon as you select it, it will start the screen capturing process and will

capture whatever screen of the emulator is currently active. It is shown below:

Android

364

The eclipse orientation can be changed using Ctrl + F11 key. Now you can save

the image or rotate it and then select done to exit the screen capture dialog.

Sqlite3

Sqlite3 is a command line program which is used to manage the SQLite

databases created by Android applications. The tool also allow us to execute the

SQL statements on the fly.

There are two way through which you can use SQLite, either from remote shell

or you can use locally.

Use Sqlite3 from a remote shell.

Enter a remote shell by entering the following command:

adb [-d|-e|-s {}] shell

From a remote shell, start the sqlite3 tool by entering the following command:

sqlite3

Once you invoke sqlite3, you can issue sqlite3 commands in the shell. To exit

and return to the adb remote shell, enter exit or press CTRL+D.

Android

365

Using Sqlite3 directly

Copy a database file from your device to your host machine.

adb pull

Start the sqlite3 tool from the /tools directory, specifying the database file:

sqlite3

Platform tools

The platform tools are customized to support the features of the latest android

platform.

The platform tools are typically updated every time you install a new SDK

platform. Each update of the platform tools is backward compatible with older

platforms.

Some of the platform tools are listed below:

 Android Debug bridge (ADB)

 Android Interface definition language (AIDL)

 aapt, dexdump, and dex etc.

Android

366

Emulator lets you emulate the real device with all its functionalities without

purchasing the real device. Android emulator lets you emulate different android

configurations by creating android virtual devices.

We are going to explore different functionalities in the emulator that are present

in the real android device in this chapter.

Creating AVD

If you want to emulate a real device, first create an AVD with the same device

configurations as real device, then launch this AVD from AVD manager.

Creating Snapshots

Creating snapshots mean saving an emulator state to a file that enables the

emulator to be started quickly the next time you try to launch it. One of the

biggest advantage of creating snapshots is that it saves the boot up time.

In order to create snapshot, check mark the option of snapshot while creating

your AVD. It is shown below:

The first time you launch the emulator, it will take the usual time of loading. But

when you close it and start it again, you will see a considerable amount of time

reduction in appearing of emulator.

Changing Orientation

Usually by default when you launch the emulator, its orientation is vertical, but

you can change its orientation by pressing Ctrl+F11 key from keyboard.

First launch the emulator. It is shown in the picture below:

38. EMULATOR

Android

367

Once it is launched, press Ctrl+F11 key to change its orientation. It is shown

below:

Android

368

Emulator Commands.

Apart from just orientation commands, there are other very useful commands of

emulator that you should keep in mind while using emulator. They are listed

below:

Sr.No Command & description

1 Home

Shifts to main screen

2 F2

Toggles context sensitive menu

3 F3

Brings out call log

4 F4

End call

5 F5

Search

6 F6

Toggle trackball mode

7 F7

Power button

8 F8

Toggle data network

9 Ctrl+F5

Ring Volume up

10 Ctrl+F6

Android

369

Ring Volume down

Emulator - Sending SMS

You can emulate sending SMS to your emulator. There are two ways to do that.

You can do that from DDMS which can be found in Eclipse, or from Telnet

(Network utility found in windows).

Sending SMS through Telnet.

Telnet is not enabled by default in windows. You have to enable it to use it. Once

enabled you can go to command prompt and start telnet by typing telnet.

In order to send SMS, note down the AVD number which can be found on the

title bar of the emulator. It could be like this 5554 etc. etc. Once noted, type this

command in command prompt.

telnet localhost 5554

Press enter when you type the command. It is shown below in the figure.

You will see that you are now connected to your emulator. Now type this

command to send message.

sms send +1234567 your sms goes here

Once you type this command, hit enter. Now look at the AVD. You will receive a

notification displaying that you got a new text message. It is shown below:

Android

370

Emulator - Making Call

You can easily make phone calls to your emulator using telnet client. You need

to connect to your emulator from telnet. It is discussed in the sending sms topic

above.

After that you will type this command in the telnet window to make a call. Its

syntax is given below:

gsm call +1234567

Once you type this command, hit enter. Now look at the AVD. You will receive a

call from the number you put in the command. It is shown below:

Android

371

Emulator - Transferring files

You can easily transfer files into the emulator and vice versa. To do that, you

need to select the DDMS utility in Eclipse. After that select the file explorer tab.

It is shown below:

Browse through the explorer and make new folder, view existing contents etc.

etc.

Android

372

Android allows your application to connect to Facebook and share data or any

kind of updates on Facebook. This chapter is about integrating Facebook into

your application.

There are two ways through which you can integrate Facebook and share

something from your application. These ways are listed below:

 Facebook SDK

 Intent Share

Integrating Facebook SDK

This is the first way of connecting with Facebook. You have to register your

application and then receive some Application Id, and then you have to

download the Facebook SDK and add it to your project. The steps are listed

below:

Generating application signature

You have to generate a key signature, but before you generate it, make sure

you have SSL installed, otherwise you have to download SSl. It can be

downloaded here.

Now open command prompt and redirect to your java jre folder. Once you reach

there, type this command exactly. You have to replace the path in the inverted

commas with your keystore path which you can find in eclipse by selecting the

window tab and selecting the preferences tab and then selecting the build option

under android from left side.

keytool -exportcert -alias androiddebugkey -keystore "your path" |

openssl sha1 -binary | openssl base64

Once you enter it, you will be prompted for password. Give android as the

password and then copy the key that is given to you. It is shown in the image

below:

39. FACEBOOK INTEGRATION

https://code.google.com/p/openssl-for-windows/downloads/detail?name=openssl-0.9.8k_WIN32.zip&can=2&q=

Android

373

Registering your application

Now create a new Facebook application at developers.facebook.com/apps and fill all

the information. It is shown below:

Now move to the native android app section and fill in your project and class

name and paste the hash that you copied in step 1. It is shown below:

If everything works fine, you will receive an application ID with the secret. Just

copy the application id and save it somewhere. It is shown in the image below:

Downloading SDK and integrating it

Download Facebook sdk here. Import this into eclipse. Once imported, right click

on your facebook project and click on properties.Click on android, click on add

button and select Facebook sdk as the project.Click ok.

Creating facebook login application

Once everything is complete, you can run the samples, that comes with SDK or

create your own application. To login, you need to

call openActiveSession method and implement its callback. Its syntax is given

below:

http://localhost/android/developers.facebook.com/apps
https://github.com/facebook/facebook-android-sdk

Android

374

// start Facebook Login

Session.openActiveSession(this, true, new Session.StatusCallback() {

 // callback when session changes state

 public void call(Session session, SessionState state, Exception
exception)

 {

 if (session.isOpened()) {

 // make request to;2 the /me API

 Request.executeMeRequestAsync(session, new Request.

 GraphUserCallback() {

 // callback after Graph API response with user object

 @Override

 public void onCompleted(GraphUser user, Response response) {

 if (user != null) {

 TextView welcome = (TextView) findViewById(R.id.welcome);

 welcome.setText("Hello " + user.getName() + "!");

 }

 }

 });

 }

}

Intent share

Intent share is used to share data between applications. In this strategy, we will

not handle the SDK stuff, but let the Facebook application handle it. We will

simply call the facebook application and pass the data to share. This way, we

can share something on Facebook.

Android provides intent library to share data between activities and applications.

In order to use it as share intent, we have to specify the type of the share intent

to ACTION_SEND. Its syntax is given below:

Intent shareIntent = new Intent();

shareIntent.setAction(Intent.ACTION_SEND);

Android

375

Next thing you need is to define the type of data to pass, and then pass the

data. Its syntax is given below:

shareIntent.setType("text/plain");

shareIntent.putExtra(Intent.EXTRA_TEXT, "Hello, from tutorialspoint");

startActivity(Intent.createChooser(shareIntent, "Share your thoughts"));

Apart from these methods, there are other methods available that allows intent

handling. They are listed below:

Sr.No Method & description

1 addCategory(String category)

This method adds a new category to the intent.

2 createChooser(Intent target, CharSequence title)

Convenience function for creating a ACTION_CHOOSER Intent.

3 getAction()

This method retrieve the general action to be performed, such as

ACTION_VIEW.

4 getCategories()

This method returns the set of all categories in the intent.nt and the

current scaling event.

5 putExtra(String name, int value)

This method add extended data to the intent.

6 toString()

This method returns a string containing a concise, human-readable

description of this object.

Example:

Here is an example demonstrating the use of IntentShare to share data on

Facebook. It creates a basic application that allows you to share some text on

Facebook.

Android

376

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as IntentShare under a package com.example.intentshare. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.intentshare/MainActivity.java.

package com.example.intentshare;

import java.io.File;

import java.io.FileOutputStream;

import com.example.intentshare.R;

import android.app.Activity;

import android.content.DialogInterface;

import android.content.DialogInterface.OnClickListener;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.os.Environment;

import android.view.Menu;

Android

377

import android.view.View;

import android.widget.ImageView;

import android.widget.Toast;

public class MainActivity extends Activity {

 private ImageView img;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 img = (ImageView) findViewById(R.id.imageView1);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void open(View view){

 Intent shareIntent = new Intent();

 shareIntent.setAction(Intent.ACTION_SEND);

 shareIntent.setType("text/plain");

 shareIntent.putExtra(Intent.EXTRA_TEXT, "Hello, from

 tutorialspoint");

 startActivity(Intent.createChooser(shareIntent, "Share your

 thoughts"));

 }

}

Android

378

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="98dp"

 android:layout_marginTop="139dp"

 android:onClick="open"

 android:src="@drawable/tp" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="48dp"

 android:text="@string/tap"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Android

379

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">IntentShare</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="tap">Tap the button to share something</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.intentshare"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.intentshare.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

Android

380

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your IntentShare application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Android

381

Now just tap on the image logo and you will see a list of share providers.

Android

382

Now just select Facebook from that list and then write any message. It is shown

in the image below:

Android

383

Now just select the post button and then it would be posted on your wall. It is

shown below:

Android

384

Android provides special types of touch screen events such as pinch, double tap,

scrolls, long presses and flinch. These are all known as gestures.

Android provides GestureDetector class to receive motion events and tell us that

these events correspond to gestures or not. To use it, you need to create an

object of GestureDetector and then extend another class with

GestureDetector.SimpleOnGestureListener to act as a listener and override

some methods. Its syntax is given below:

GestureDetector myG;

myG = new GestureDetector(this,new Gesture());

 class Gesture extends GestureDetector.SimpleOnGestureListener{

 public boolean onSingleTapUp(MotionEvent ev) {

 }

 public void onLongPress(MotionEvent ev) {

 }

 public boolean onScroll(MotionEvent e1, MotionEvent e2, float

 distanceX,

 float distanceY) {

 }

 public boolean onFling(MotionEvent e1, MotionEvent e2, float

 velocityX,

 float velocityY) {

 }

}

}

Handling Pinch Gesture

Android provides ScaleGestureDetector class to handle gestures like pinchetc.

In order to use it, you need to instantiate an object of this class. Its syntax is as

follow:

40. GESTURES

Android

385

ScaleGestureDetector SGD;

SGD = new ScaleGestureDetector(this,new ScaleListener());

The first parameter is the context and the second parameter is the event

listener. We have to define the event listener and override a

function OnTouchEvent to make it working. Its syntax is given below:

public boolean onTouchEvent(MotionEvent ev) {

 SGD.onTouchEvent(ev);

 return true;

}

private class ScaleListener extends

ScaleGestureDetector.SimpleOnScaleGestureListener {

 @Override

 public boolean onScale(ScaleGestureDetector detector) {

 float scale = detector.getScaleFactor();

 return true;

 }

}

Apart from the pinch gestures, there are other methods available that notify

more about touch events. They are listed below:

Sr.No Method & description

1 getEventTime()

This method gets the event time of the current event being processed.

2 getFocusX()

This method gets the X coordinate of the current gesture's focal point.

3 getFocusY()

This method gets the Y coordinate of the current gesture's focal point.

4 getTimeDelta()

This method returns the time difference in milliseconds between the

previous accepted scaling event and the current scaling event.

Android

386

5 isInProgress()

This method returns true if a scale gesture is in progress.

6 onTouchEvent(MotionEvent event)

This method accepts MotionEvents and dispatches events when

appropriate.

Example:

Here is an example demonstrating the use of ScaleGestureDetector class. It creates

a basic application that allows you to zoom in and out through pinch.

To experiment with this example, you can run this on an actual device or in an

emulator with touch screen enabled.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Gestures under a package com.example.gestures. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.gestures/MainActivity.java.

package com.example.gestures;

import android.app.Activity;

import android.graphics.Matrix;

Android

387

import android.os.Bundle;

import android.view.Menu;

import android.view.MotionEvent;

import android.view.ScaleGestureDetector;

import android.widget.ImageView;

public class MainActivity extends Activity {

 private ImageView img;

 private Matrix matrix = new Matrix();

 private float scale = 1f;

 private ScaleGestureDetector SGD;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 img = (ImageView)findViewById(R.id.imageView1);

 SGD = new ScaleGestureDetector(this,new ScaleListener());

 }

 @Override

 public boolean onTouchEvent(MotionEvent ev) {

 SGD.onTouchEvent(ev);

 return true;

 }

 private class ScaleListener extends ScaleGestureDetector.

 SimpleOnScaleGestureListener {

 @Override

 public boolean onScale(ScaleGestureDetector detector) {

 scale *= detector.getScaleFactor();

 scale = Math.max(0.1f, Math.min(scale, 5.0f));

 matrix.setScale(scale, scale);

 img.setImageMatrix(matrix);

Android

388

 return true;

 }

}

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/hello_world" />

 <ImageView

 android:id="@+id/imageView1"

Android

389

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_below="@+id/textView1"

 android:scaleType="matrix"

 android:src="@android:drawable/sym_def_app_icon" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Gestures</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Pinch to zoom in or out!</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.gestures"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

Android

390

 <activity

 android:name="com.example.gestures.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your Gestures application. We assume, you have connected your

actual Android Mobile device with your computer. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Before starting your application, Eclipse will display following window to select

an option where you want to run your Android application.

Android

391

Android

392

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Android

393

Now just place two fingers over android screen, and separate them apart and

you will see that the android image is zooming. It is shown in the image below:

Android

394

Now again place two fingers over android screen, and try to close them and you

will see that the android image is now shrinking. It is shown in the image below:

Android

395

Android allows us to integrate google maps in our application. You can show any

location on the map, or can show different routes on the map etc. etc. You can

also customize the map according to your choices.

Adding Google Map

Google provides this facility using google play services library which you have to

download externally. After downloading, you have to integrate it with your

project. In the end you have to integrate your application with google via google

console. This is completely discussed in the example.

Google Map - Activity file

Google provides GoogleMap and MapFragment api to integrate map in your

android application. In order to use GoogleMap, you have to create an object of

GoogleMap and get the reference of map from the xml layout file. Its syntax is

given below:

GoogleMap googleMap;

googleMap = ((MapFragment)

getFragmentManager().findFragmentById(R.id.map)).getMap();

Google Map - Layout file

Now you have to add the map fragment into xml layout file. Its syntax is given

below:

<fragment

 android:id="@+id/map"

 android:name="com.google.android.gms.maps.MapFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

Google Map - AndroidManifest file

The next thing you need to do is to add some permissions along with the Google

Map API key in the AndroidManifest.XML file. Its syntax is given below:

<!--Permissions-->

41. GOOGLE MAPS

Android

396

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"

/>

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission
android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"

/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"

/>

<!--Google MAP API key-->

<meta-data

 android:name="com.google.android.maps.v2.API_KEY"

 android:value="AIzaSyDKymeBXNeiFWY5jRUejv6zItpmr2MVyQ0" />

Customizing Google Map

You can easily customize google map from its default view, and change it

according to your demand.

Adding Marker

You can place a marker with some text over it displaying your location on the

map. It can be done by via addMarker() method. Its syntax is given below:

final LatLng TutorialsPoint = new LatLng(21, 57);

Marker TP = googleMap.addMarker(new

MarkerOptions().position(TutorialsPoint).title("TutorialsPoint"));

Changing Map Type

You can also change the type of the MAP. There are four different types of map

and each give different view of the map. These types are Normal, Hybrid,

Satellite and terrain. You can use them as below:

googleMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

googleMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);

googleMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);

googleMap.setMapType(GoogleMap.MAP_TYPE_TERRAIN);

Android

397

Enable/Disable zoom

You can also enable or disable the zoom gestures in the map by calling the

setZoomControlsEnabled(boolean) method. Its syntax is given below:

googleMap.getUiSettings().setZoomGesturesEnabled(true);

Apart from these customization, there are other methods available in the

GoogleMap class that helps you more to customize the map. They are listed

below:

Sr.No Method & description

1 addCircle(CircleOptions options)

This method adds a circle to the map.

2 addPolygon(PolygonOptions options)

This method adds a polygon to the map.

3 addTileOverlay(TileOverlayOptions options)

This method adds tile overlay to the map.

4 animateCamera(CameraUpdate update)

This method moves the map according to the update with an

animation.

5 clear()

This method removes everything from the map.

6 getMyLocation()

This method returns the currently displayed user location.

7 moveCamera(CameraUpdate update)

This method repositions the camera according to the instructions

defined in the update.

8 setTrafficEnabled(boolean enabled)

This method toggles the traffic layer on or off.

Android

398

9 snapshot(GoogleMap.SnapshotReadyCallback callback)

This method takes a snapshot of the map.

10 stopAnimation()

This method stops the camera animation if there is one in progress

Example:

Here is an example demonstrating the use of GoogleMap class. It creates a basic M

application that allows you to navigate through the map.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 Integrate google maps in your application.

2 You will use Eclipse IDE to create an Android application and name it

as GoogleMaps under a package com.example.googlemaps. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

3 Modify src/MainActivity.java file to add necessary code.

4 Modify the res/layout/activity_main to add respective XML

components.

5 Modify AndroidManifest.xml to add necessary internet permission.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Integrating Google Maps

Integrating google maps in your application basically consists of these 4 steps.

 Download and configure. Google Play Services SDK

 Obtain API key from google console

 Specify Android Manifest settings

Android

399

Download and configure. Google Play Services SDK

Install Google services SDK

Open your SDK manager in the eclipse by clicking the Window and then

selecting the Android SDK manager.

Navigate to the extras tab and select the Google play services and click on install

this package. It would be like this.

Import SDK to eclipse

After you download the SDK, click on file tab and select import option. Select

existing android application code and press ok. Browse to your android folder

and then sdk folder. In sdk folder expand extras folder. Expand google folder

and select google play services.

Configure your project with SDK

After you import the SDK, you have to add it into your project. For this, right

click on your eclipse project and select properties. Select android from left tab

and then select add from right below panel and add the project. It would be like

this

Android

400

Obtaining the API key

This part is furthur divided into two steps. First you have to get an SHA1

fingerprint key from your pc and then you have to get map API key from google

console.

Getting Certificate from KeyTool

You need to get a certificate key because you have to provide it to google

console in order to get your API key for map.

Open your command prompt and move to the path where your java jre has been

placed. Now type this command.

keytool -list -v -alias androiddebugkey -keystore %%Your path%% -

storepass android -keypass android

Replace the percentage part of the command with the path which you will copy

from by selecting the window tab and selecting the preferences tab and then

selecting the build option under android from left side.

Copy the default debug keystore path and replace it in the command and hit

enter. The following result would appear.

Android

401

Copy the SHA1 key because you need it in the next step.

Getting key from Google Console

Open Google Console and sign in by clicking a new project.

Click on services from the left tab and then navigate to the Google Maps Android

API v2. You have to turn them on like this

Now again go to the left tab and select API access. And click on create new

android key. Now paste the key that you copied and put a semicolon and paste

your project name and click create. It would be like this.

Now copy the API key that has been given to your by android, because you have

to paste it into your manifest file.

Specify Android Manifest Settings

The final step is to add the API key to your application. Open your manifest file

and place this code right before closing the application tag.

<meta-data

 android:name="com.google.android.maps.v2.API_KEY"

https://code.google.com/apis/console/

Android

402

 android:value="API_KEY"/>

In the second line replace API_KEY with your api key and you are done. You

need to add some permissions in your manifest too, which are given below in

the manifest file.

Adding Google Maps to your application.

Following is the content of the modified main activity file

src/com.example.googlemaps/MainActivity.java.

package com.example.googlemaps;

import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.MapFragment;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.MarkerOptions;

import android.os.Bundle;

import android.app.Activity;

import android.widget.Toast;

public class MainActivity extends Activity {

 static final LatLng TutorialsPoint = new LatLng(21, 57);

 private GoogleMap googleMap;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 try {

 if (googleMap == null) {

 googleMap = ((MapFragment) getFragmentManager().

 findFragmentById(R.id.map)).getMap();

 }

 googleMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);

Android

403

 Marker TP = googleMap.addMarker(new MarkerOptions().

 position(TutorialsPoint).title("TutorialsPoint"));

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 <fragment

 android:id="@+id/map"

 android:name="com.google.android.gms.maps.MapFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

</RelativeLayout>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.googlemaps"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-permission

Android

404

 android:name="com.example.googlemaps.permission.MAPS_RECEIVE" />

 <uses-sdk

 android:minSdkVersion="12"

 android:targetSdkVersion="17" />

 <permission

 android:name="com.example.googlemaps.permission.MAPS_RECEIVE"

 android:protectionLevel="signature" />

 <uses-permission

 android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="com.google.android.providers.

 gsf.permission.

 READ_GSERVICES" />

 <uses-permission android:name="android.permission.

 WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.

 ACCESS_COARSE_LOCATION" />

 <uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

 <uses-feature

 android:glEsVersion="0x00020000"

 android:required="true" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

Android

405

 <activity

 android:name="com.example.googlemaps.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

<meta-data

 android:name="com.google.android.maps.v2.API_KEY"

 android:value="AIzaSyDKymeBXNeiFWY5jRUejv6zItpmr2MVyQ0" />

 </application>

</manifest>

Android

406

Let's try to run your GoogleMaps application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

407

Now what you need to do is to tap on the balloon to see the text.

Now you can customize the google map according to your choice with the

functions given in the GoogleMap API.

Android

408

Android allows you to manipulate images by adding different kinds of effects on

the images. You can easily apply image processing techniques to add certain

kinds of effects on images. The effects could be brightness, darkness, grayscale

conversion etc.

Android provides Bitmap class to handle images. This can be found under

android.graphics.bitmap. There are many ways through which you can

instantiate bitmap. We are creating a bitmap of image from the imageView.

private Bitmap bmp;

private ImageView img;

img = (ImageView)findViewById(R.id.imageView1);

BitmapDrawable abmp = (BitmapDrawable)img.getDrawable();

Now we will create bitmap by calling getBitmap() function of BitmapDrawable

class. Its syntax is given below:

bmp = abmp.getBitmap();

An image is nothing but a two dimensional matrix. Same way you will handle a

bitmap. An image consist of pixels. So you will get pixels from this bitmap and

apply processing to it. Its syntax is as follows:

for(int i=0; i<bmp.getWidth(); i++){

 for(int j=0; j<bmp.getHeight(); j++){

 int p = bmp.getPixel(i, j);

 }

}

The getWidth() and getHeight() functions returns the height and width of the

matrix. The getPixel() method returns the pixel at the specified index. Once you

got the pixel, you can easily manipulate it according to your needs.

Apart from these methods, there are other methods that help us manipulate

images more better.

Sr.No Method & description

1 copy(Bitmap.Config config, boolean isMutable)

42. IMAGE EFFECTS

Android

409

This method copy this bitmap's pixels into the new bitmap.

2 createBitmap(DisplayMetrics display, int width, int height,

Bitmap.Config config)

Returns a mutable bitmap with the specified width and height.

3 createBitmap(int width, int height, Bitmap.Config config)

Returns a mutable bitmap with the specified width and height.

4 createBitmap(Bitmap src)

Returns an immutable bitmap from the source bitmap.

5 extractAlpha()

Returns a new bitmap that captures the alpha values of the original.

6 getConfig()

This method returns config, otherwise returns null.

7 getDensity()

Returns the density for this bitmap

8 getRowBytes()

Return the number of bytes between rows in the bitmap's pixels.

9 setPixel(int x, int y, int color)

Writes the specified Color into the bitmap (assuming it is mutable) at

the x,y coordinate.

10 setDensity(int density)

This method specifies the density for this bitmap

Example:

The below example demonstrates some of the image effects on the bitmap. It

creates a basic application that allows you to convert the picture into grayscale and

much more.

Android

410

To experiment with this example, you need to run this on an actual device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as ImageEffects under a package com.example.imageeffects. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.imageeffects/MainActivity.java.

package com.example.imageeffects;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.Color;

import android.graphics.drawable.BitmapDrawable;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.ImageView;

public class MainActivity extends Activity {

 private ImageView img;

 private Bitmap bmp;

Android

411

 private Bitmap operation;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 img = (ImageView)findViewById(R.id.imageView1);

 BitmapDrawable abmp = (BitmapDrawable)img.getDrawable();

 bmp = abmp.getBitmap();

 }

 public void gray(View view){

 operation= Bitmap.createBitmap(bmp.getWidth(),

 bmp.getHeight(),bmp.getConfig());

 double red = 0.33;

 double green = 0.59;

 double blue = 0.11;

 for(int i=0; i<bmp.getWidth(); i++){

 for(int j=0; j<bmp.getHeight(); j++){

 int p = bmp.getPixel(i, j);

 int r = Color.red(p);

 int g = Color.green(p);

 int b = Color.blue(p);

 r = (int) red * r;

 g = (int) green * g;

 b = (int) blue * b;

 operation.setPixel(i, j, Color.argb(Color.alpha(p), r, g, b));

 }

Android

412

 }

 img.setImageBitmap(operation);

 }

 public void bright(View view){

 operation= Bitmap.createBitmap(bmp.getWidth(),

 bmp.getHeight(),bmp.getConfig());

 for(int i=0; i<bmp.getWidth(); i++){

 for(int j=0; j<bmp.getHeight(); j++){

 int p = bmp.getPixel(i, j);

 int r = Color.red(p);

 int g = Color.green(p);

 int b = Color.blue(p);

 int alpha = Color.alpha(p);

 r = 100 + r;

 g = 100 + g;

 b = 100 + b;

 alpha = 100 + alpha;

 operation.setPixel(i, j, Color.argb(alpha, r, g, b));

 }

 }

 img.setImageBitmap(operation);

 }

 public void dark(View view){

 operation= Bitmap.createBitmap(bmp.getWidth(),

 bmp.getHeight(),bmp.getConfig());

 for(int i=0; i<bmp.getWidth(); i++){

Android

413

 for(int j=0; j<bmp.getHeight(); j++){

 int p = bmp.getPixel(i, j);

 int r = Color.red(p);

 int g = Color.green(p);

 int b = Color.blue(p);

 int alpha = Color.alpha(p);

 r = r - 50;

 g = g - 50;

 b = b - 50;

 alpha = alpha -50;

 operation.setPixel(i, j, Color.argb(Color.alpha(p), r, g,

 b));

 }

 }

 img.setImageBitmap(operation);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

Android

414

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/button1"

 android:layout_alignBottom="@+id/button1"

 android:layout_alignParentRight="true"

 android:layout_marginRight="19dp"

 android:onClick="dark"

 android:text="@string/dark" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_marginBottom="87dp"

 android:layout_marginRight="17dp"

 android:layout_toLeftOf="@+id/button3"

 android:onClick="gray"

 android:text="@string/gray" />

 <Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

Android

415

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/button2"

 android:layout_alignBottom="@+id/button2"

 android:layout_centerHorizontal="true"

 android:onClick="bright"

 android:text="@string/bright" />

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="114dp"

 android:src="@drawable/ic_launcher" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">ImageEffects</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="gray">Gray</string>

 <string name="bright">bright</string>

 <string name="dark">dark</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

Android

416

 package="com.example.imageeffects"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.imageeffects.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

417

Let's try to run our Image Effects application we just modified. We assume, you

had created your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Android

418

Now if you will look at your device screen, you will see an image of android

along with three buttons.

Now just select the gray button that will convert your image into grayscale and

will update the UI. It is shown below:

Android

419

Now tap on the bright button, that will add some value to each pixel of the

image and thus makes an illusion of brightness. It is shown below:

Android

420

Now tap on the dark button, that will subtract some value to each pixel of the

image and thus makes an illusion of dark. It is shown below:

Android

421

Sometimes you don't want an image to appear abruptly on the screen, rather

you want to apply some kind of animation to the image when it transitions from

one image to another. This is supported by android in the form of

ImageSwitcher.

An image switcher allows you to add some transitions on the images through the

way they appear on screen. In order to use image Switcher, you need to define

its XML component first. Its syntax is given below:

<ImageSwitcher

 android:id="@+id/imageSwitcher1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true" >

</ImageSwitcher>

Now we create an instance of ImageSwithcer in java file and get a reference of

this XML component. Its sytnax is given below:

private ImageSwitcher imageSwitcher;

imageSwitcher = (ImageSwitcher)findViewById(R.id.imageSwitcher1);

The next thing we need to do is implement the ViewFactory interface and

implement unimplemented method that returns an imageView. Its syntax is

below:

imageSwitcher.setImageResource(R.drawable.ic_launcher);

imageSwitcher.setFactory(new ViewFactory() {

 public View makeView() {

 ImageView myView = new ImageView(getApplicationContext());

 return myView;

 }

}

The last thing you need to do is to add Animation to the ImageSwitcher. You

need to define an object of Animation class through AnimationUtilities class by

calling a static method loadAnimation. Its syntax is given below:

43. IMAGE SWITCHER

Android

422

Animation in =

AnimationUtils.loadAnimation(this,android.R.anim.slide_in_left);

imageSwitcher.setInAnimation(in);

imageSwitcher.setOutAnimation(out);

The method setInAnimaton sets the animation of the appearance of the object

on the screen whereas setOutAnimation does the opposite. The method

loadAnimation() creates an animation object.

Apart from these methods, there are other methods defined in the

ImageSwitcher class. They are defined below:

Sr.No Method & description

1 setImageDrawable(Drawable drawable)

Sets an image with image switcher. The image is passed in the form of

bitmap.

2 setImageResource(int resid)

Sets an image with image switcher. The image is passed in the form of

integer id.

3 setImageURI(Uri uri)

Sets an image with image switcher. The image is passed in the form of

URI.

4 ImageSwitcher(Context context, AttributeSet attrs)

Returns an image switcher object with already setting some attributes

passed in the method.

5 onInitializeAccessibilityEvent (AccessibilityEvent event)

Initializes an AccessibilityEvent with information about this View which

is the event source.

6 onInitializeAccessibilityNodeInfo (AccessibilityNodeInfo info)

Initializes an AccessibilityNodeInfo with information about this view

Android

423

Example:

The below example demonstrates some of the image switcher effects on the

bitmap. It creates a basic application that allows you to view the animation

effects on the images.

To experiment with this example, you need to run this on an actual device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as ImageSwitcher under a package com.example.imageswitcher.

While creating this project, make sure you Target SDK and Compile

With at the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.imageswithcer/MainActivity.java.

package com.example.imageswitcher;

import android.app.ActionBar.LayoutParams;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

import android.widget.ImageButton;

import android.widget.ImageSwitcher;

import android.widget.ImageView;

import android.widget.Toast;

Android

424

import android.widget.ViewSwitcher.ViewFactory;

public class MainActivity extends Activity {

 private ImageButton img;

 private ImageSwitcher imageSwitcher;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 img = (ImageButton)findViewById(R.id.imageButton1);

 imageSwitcher = (ImageSwitcher)findViewById(R.id.imageSwitcher1);

 imageSwitcher.setFactory(new ViewFactory() {

 @Override

 public View makeView() {

 ImageView myView = new ImageView(getApplicationContext());

 myView.setScaleType(ImageView.ScaleType.FIT_CENTER);

 myView.setLayoutParams(new ImageSwitcher.LayoutParams(LayoutParams.

 FILL_PARENT,LayoutParams.FILL_PARENT));

 return myView;

 }

 });

 }

 public void next(View view){

 Toast.makeText(getApplicationContext(), "Next Image",

 Toast.LENGTH_LONG).show();

 Animation in = AnimationUtils.loadAnimation(this,

 android.R.anim.slide_in_left);

Android

425

 Animation out = AnimationUtils.loadAnimation(this,

 android.R.anim.slide_out_right);

 imageSwitcher.setInAnimation(in);

 imageSwitcher.setOutAnimation(out);

 imageSwitcher.setImageResource(R.drawable.ic_launcher);

 }

 public void previous(View view){

 Toast.makeText(getApplicationContext(), "previous Image",

 Toast.LENGTH_LONG).show();

 Animation in = AnimationUtils.loadAnimation(this,

 android.R.anim.slide_out_right);

 Animation out = AnimationUtils.loadAnimation(this,

 android.R.anim.slide_in_left);

 imageSwitcher.setInAnimation(out);

 imageSwitcher.setOutAnimation(in);

 imageSwitcher.setImageResource(R.drawable.ic_launcher);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

Android

426

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ImageButton

 android:id="@+id/imageButton1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="54dp"

 android:onClick="next"

 android:src="@android:drawable/ic_menu_send" />

 <ImageSwitcher

 android:id="@+id/imageSwitcher1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true" >

 </ImageSwitcher>

 <ImageButton

 android:id="@+id/imageButton2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_centerHorizontal="true"

 android:layout_marginBottom="85dp"

 android:onClick="previous"

 android:src="@android:drawable/ic_menu_revert" />

Android

427

</RelativeLayout>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.imageswitcher"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.imageswitcher.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

428

Let's try to run our Image Switcher application we just modified. We assume,

you had created your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Android

429

Now if you will look at your device screen, you will see the two buttons.

Now just select the upper button with right arrow. An image would appear from

right and move towards left. It is shown below:

Android

430

Now tap on the below button, that will bring back the previous image with some

transition. It is shown below:

Android

431

Android provides many kinds of storage for applications to store their data. The

storage places are shared preferences, internal and external storage, SQLite

storage, and storage via network connection.

We are going to look at the internal storage in this chapter. Internal storge is the

storage of the private data on the device memory.

By default these files are private and are accessed by only your application and

get deleted, when user delete your application.

Writing file

In order to use internal storage to write some data in the file, call the

openFileOutput() method with the name of the file and the mode. The mode

could be private, public etc. Its syntax is given below:

FileOutputStream fOut = openFileOutput("file name

here",MODE_WORLD_READABLE);

The method openFileOutput() returns an instance of FileOutputStream. So you

receive it in the object of FileInputStream. After that you can call write method

to write data on the file. Its syntax is given below:

String str = "data";

fOut.write(str.getBytes());

fOut.close();

Reading file

In order to read from the file you just created, call the openFileInput() method

with the name of the file. It returns an instance of FileInputStream. Its syntax is

given below:

FileInputStream fin = openFileInput(file);

After that, you can call read method to read one character at a time from the file

and then you can print it. Its syntax is given below:

int c;

String temp="";

while((c = fin.read()) != -1){

44. INTERNAL STORAGE

Android

432

 temp = temp + Character.toString((char)c);

}

//string temp contains all the data of the file.

fin.close();

Apart from the methods of write and close, there are other methods provided by

the FileOutputStream class for better writing files. These methods are listed

below:

Sr.No Method & description

1 FileOutputStream(File file, boolean append)

This method constructs a new FileOutputStream that writes to file.

2 getChannel()

This method returns a write-only FileChannel that shares its position

with this stream.

3 getFD()

This method returns the underlying file descriptor.

4 write(byte[] buffer, int byteOffset, int byteCount)

This method Writes count bytes from the byte array buffer starting at

position offset to this stream.

Apart from the methods of read and close, there are other methods provided by

the FileInputStream class for better reading files. These methods are listed

below:

Sr.No Method & description

1 available()

This method returns an estimated number of bytes that can be read or

skipped without blocking for more input.

2 getChannel()

This method returns a read-only FileChannel that shares its position

Android

433

with this stream.

3 getFD()

This method returns the underlying file descriptor.

4 read(byte[] buffer, int byteOffset, int byteCount)

This method reads at most length bytes from this stream and stores

them in the byte array by starting at offset.

Example:

Here is an example demonstrating the use of internal storage to store and read

files. It creates a basic storage application that allows you to read and write

from internal storage.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Storage under a package com.example.storage. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install the

application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.storage/MainActivity.java.

Android

434

package com.example.storage;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.InputStreamReader;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

 private EditText et;

 private String data;

 private String file = "mydata";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 et = (EditText)(findViewById(R.id.editText1));

 }

 public void save(View view){

 data = et.getText().toString();

 try {

 FileOutputStream fOut =

 openFileOutput(file,MODE_WORLD_READABLE);

 fOut.write(data.getBytes());

 fOut.close();

 Toast.makeText(getBaseContext(),"file saved",

Android

435

 Toast.LENGTH_SHORT).show();

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 public void read(View view){

 try{

 FileInputStream fin = openFileInput(file);

 int c;

 String temp="";

 while((c = fin.read()) != -1){

 temp = temp + Character.toString((char)c);

 }

 et.setText(temp);

 Toast.makeText(getBaseContext(),"file read",

 Toast.LENGTH_SHORT).show();

 }catch(Exception e){

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Android

436

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="182dp"

 android:onClick="save"

 android:text="@string/save" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/button1"

 android:layout_alignRight="@+id/button1"

 android:layout_below="@+id/button1"

 android:layout_marginTop="46dp"

 android:onClick="read"

 android:text="@string/read" />

 <EditText

Android

437

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/button1"

 android:layout_alignParentTop="true"

 android:layout_marginTop="23dp"

 android:ems="10"

 android:inputType="textMultiLine" >

 <requestFocus />

 </EditText>

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Storage</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="save">save to internal storage</string>

 <string name="read">load from internal storage</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.storage"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

Android

438

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.storage.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

439

Let's try to run our Storage application we just modified. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Android

440

Now what you need to do is to enter any text in the field. For example, we have

entered some text. Press the save button. The following notification would

appear in you AVD:

Android

441

Now when you press the load button, the application will read the file, and

display the data. In our case, following data would be returned:

Note, you can actually view this file by switching to DDMS tab. In DDMS, select

file explorer and navigate this path.

data>data>com.example.storage>files>mydata

This has also been shown in the image below.

Android

442

The Android platform includes a JET engine that lets you add interactive

playback of JET audio content in your applications. Android provides JetPlayer

class to handle this stuff.

In order to Jet Content, you need to use the JetCreator tool that comes with

AndroidSDK. The usage of jetCreator has been discussed in the example. In

order to play the content created by JetCreator, you need JetPlayer class

supported by android.

In order to use JetPlayer, you need to instantiate an object of JetPlayer class. Its

syntax is given below:

JetPlayer jetPlayer = JetPlayer.getJetPlayer();

The next thing you need to do is to call loadJetFile method and pass in the path

of your Jet file. After that you have to add this into the Queue of JetPlayer. Its

syntax is given below:

jetPlayer.loadJetFile("/sdcard/level1.jet");

byte segmentId = 0;

// queue segment 5, repeat once, use General MIDI, transpose by -1 octave

jetPlayer.queueJetSegment(5, -1, 1, -1, 0, segmentId++);

The method queueJetSegment Queues the specified segment in the JET Queue.

The last thing you need is to call the play method to start playing the music. Its

syntax is given below:

jetPlayer.play();

Apart from these methods, there are other methods defined in the JetPlayer

class. They are defined below:

Sr.No Method & description

1 clearQueue()

Empties the segment queue, and clears all clips that are scheduled for

playback.

2 closeJetFile()

45. JETPLAYER

Android

443

Closes the resource containing the JET content.

3 getJetPlayer()

Factory method for the JetPlayer class.

4 loadJetFile(String path)

Loads a .jet file from a given path.

5 pause()

Pauses the playback of the JET segment queue.

6 release()

Stops the current JET playback, and releases all associated native

resources.

Example:

The following example demonstrates the use of JetCreator tool to create Jet content.

Once that content is created, you can play it through JetPlayer.

To experiment with this example, you need to run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as JetPlayer under a package com.example.jetplayer. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Install Python and WxPython on your computer from internet.

3 Run the jet creator from command prompt.

4 Create Jet content and then save it.

5 Run the application and verify the results.

Android

444

Using JetCreator

Installing python

The first step that you need while using JetCreator is to install the python. The

python can be installed from its official website https://www.python.org/ or

from anywhere else on the internet.

Please keep in mind the version number of the python should either be 2.6 or

2.7 because this example follows that.

Once you download python, install it. After installing you have to set path to the

python. Open your command prompt and type the following command. It is

shown in the image below:

Once path is set, you can verify it by typing python and hit enter. It is shown

below:

Installing WxPython

The next thing you need to do is to install the wxPython. It can be

downloaded here. Once downloaded, you will install it. It will be automatically

installed in the python directory.

Running JetCreator

The next thing you need is to move to the path where JetCreator is present. It is

in the tools, SDK folder of the android. It is shown below:

http://www.wxpython.org/download.php

Android

445

Once in the folder, type this command and hit enter.

python JetCreator.py

It is shown in the figure below:

As soon as you hit enter, Jet Creator window will open. It would be something

like this.

Creating JetContent

In the above Jet Window, click on the import button. And select

JetCreator_demo_1 or 2 from the JetFolder from the demo content folder in the

Jet folder. It is shown in the image below:

Android

446

Once you import the content, you will see the content in the JetCreator window.

It is shown below:

Now you can explore different options of JetCreator by visiting the JetCreator

link http://developer.android.com/guide/topics/media/jet/jetcreator_manual.htm

l. Finally in order to create .jet file, you need to save the content from the file

menu.

Verifying Results

Once you got the jet file, you can play it using jet player. The main code of

playing it has been given below:

Android

447

JetPlayer jetPlayer = JetPlayer.getJetPlayer();

jetPlayer.loadJetFile("/sdcard/level1.jet");

byte segmentId = 0;

// queue segment 5, repeat once, use General MIDI, transpose by -1 octave

jetPlayer.queueJetSegment(5, -1, 1, -1, 0, segmentId++);

jetPlayer.play();

Android

448

JSON stands for JavaScript Object Notation. It is an independent data exchange

format and is the best alternative for XML. This chapter explains how to parse

the JSON file and extract necessary information from it.

Android provides four different classes to manipulate JSON data. These classes

are JSONArray, JSONObject, JSONStringer and JSONTokenizer.

The first step is to identify the fields in the JSON data in which you are

interested. For example, in the JSON given below we are interested in getting

temperature only.

{

"sys":

 {

 "country":"GB",

 "sunrise":1381107633,

 "sunset":1381149604

 },

"weather":[

 {

 "id":711,

 "main":"Smoke",

 "description":"smoke",

 "icon":"50n"

 }

],

"main":

 {

 "temp":304.15,

 "pressure":1009,

 }

}

46. JSON PARSER

Android

449

JSON - Elements

A JSON file consist of many components. Here is the table defining the

compoents of a JSON file and their description:

Sr.No Component & description

1 Array([)

In a JSON file, square bracket ([) represents a JSON array.

2 Objects({)

In a JSON file, curly bracket ({) represents a JSON object.

3 Key

A JSON object contains a key that is just a string. Pairs of key/value

make up a JSON object.

4 Value

Each key has a value that could be string, integer or double etc.

JSON - Parsing

For parsing a JSON object, we will create an object of class JSONObject and

specify a string containing JSON data to it. Its syntax is:

String in;

JSONObject reader = new JSONObject(in);

The last step is to parse the JSON. A JSON file consist of different object with

different key/value pair etc. So JSONObject has a separate function for parsing

each of the component of JSON file. Its syntax is given below:

JSONObject sys = reader.getJSONObject("sys");

country = sys.getString("country");

JSONObject main = reader.getJSONObject("main");

temperature = main.getString("temp");

The method getJSONObject returns the JSON object. The

method getString returns the string value of the specified key.

Android

450

Apart from these methods, there are other methods provided by this class for

better parsing JSON files. These methods are listed below:

Sr.No Method & description

1 get(String name)

This method just Returns the value but in the form of Object type.

2 getBoolean(String name)

This method returns the boolean value specified by the key.

3 getDouble(String name)

This method returns the double value specified by the key.

4 getInt(String name)

This method returns the integer value specified by the key.

5 getLong(String name)

This method returns the long value specified by the key.

6 length()

This method returns the number of name/value mappings in this

object.

7 names()

This method returns an array containing the string names in this

object.

Example:

Here is an example demonstrating the use of JSONObject class. It creates a

basic Weather application that allows you to parse JSON from google weather

api and shows the result.

To experiment with this example, you can run this on an actual device or in an

emulator.

Android

451

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as JSONParser under a package com.example.jsonparser. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Create a new java file under src/HandleJSON.java to fetch and parse

XML data.

6 Modify AndroidManifest.xml to add necessary internet permission.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.jsonparser/MainActivity.java.

package com.example.jsonparser;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

public class MainActivity extends Activity {

 private String url1 =

 "http://api.openweathermap.org/data/2.5/weather?q=";

Android

452

 private EditText location,country,temperature,humidity,pressure;

 private HandleJSON obj;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 location = (EditText)findViewById(R.id.editText1);

 country = (EditText)findViewById(R.id.editText2);

 temperature = (EditText)findViewById(R.id.editText3);

 humidity = (EditText)findViewById(R.id.editText4);

 pressure = (EditText)findViewById(R.id.editText5);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items

 //to the action bar if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void open(View view){

 String url = location.getText().toString();

 String finalUrl = url1 + url;

 country.setText(finalUrl);

 obj = new HandleJSON(finalUrl);

 obj.fetchJSON();

 while(obj.parsingComplete);

 country.setText(obj.getCountry());

 temperature.setText(obj.getTemperature());

 humidity.setText(obj.getHumidity());

 pressure.setText(obj.getPressure());

Android

453

 }

}

Following is the content of src/com.example.jsonparser/HandleXML.java.

package com.example.jsonparser;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.StringWriter;

import java.io.UnsupportedEncodingException;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import org.json.JSONObject;

import org.xmlpull.v1.XmlPullParser;

import org.xmlpull.v1.XmlPullParserFactory;

import android.annotation.SuppressLint;

public class HandleJSON {

 private String country = "county";

 private String temperature = "temperature";

 private String humidity = "humidity";

 private String pressure = "pressure";

 private String urlString = null;

 public volatile boolean parsingComplete = true;

 public HandleJSON(String url){

 this.urlString = url;

 }

Android

454

 public String getCountry(){

 return country;

 }

 public String getTemperature(){

 return temperature;

 }

 public String getHumidity(){

 return humidity;

 }

 public String getPressure(){

 return pressure;

 }

 @SuppressLint("NewApi")

 public void readAndParseJSON(String in) {

 try {

 JSONObject reader = new JSONObject(in);

 JSONObject sys = reader.getJSONObject("sys");

 country = sys.getString("country");

 JSONObject main = reader.getJSONObject("main");

 temperature = main.getString("temp");

 pressure = main.getString("pressure");

 humidity = main.getString("humidity");

 parsingComplete = false;

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

Android

455

 }

 }

 public void fetchJSON(){

 Thread thread = new Thread(new Runnable(){

 @Override

 public void run() {

 try {

 URL url = new URL(urlString);

 HttpURLConnection conn = (HttpURLConnection)

 url.openConnection();

 conn.setReadTimeout(10000 /* milliseconds */);

 conn.setConnectTimeout(15000 /* milliseconds */);

 conn.setRequestMethod("GET");

 conn.setDoInput(true);

 // Starts the query

 conn.connect();

 InputStream stream = conn.getInputStream();

 String data = convertStreamToString(stream);

 readAndParseJSON(data);

 stream.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 thread.start();

 }

 static String convertStreamToString(java.io.InputStream is) {

 java.util.Scanner s = new

Android

456

 java.util.Scanner(is).useDelimiter("\\A");

 return s.hasNext() ? s.next() : "";

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="15dp"

 android:text="@string/location"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/textView1"

 android:layout_alignParentRight="true"

 android:ems="10" />

Android

457

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView1"

 android:layout_below="@+id/textView1"

 android:layout_marginTop="68dp"

 android:text="@string/country"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/textView2"

 android:layout_marginTop="19dp"

 android:text="@string/temperature"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView3"

 android:layout_below="@+id/textView3"

 android:layout_marginTop="32dp"

 android:text="@string/humidity"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

458

 android:layout_alignLeft="@+id/textView4"

 android:layout_below="@+id/textView4"

 android:layout_marginTop="21dp"

 android:text="@string/pressure"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/textView3"

 android:layout_toRightOf="@+id/textView3"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <EditText

 android:id="@+id/editText3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView3"

 android:layout_alignBottom="@+id/textView3"

 android:layout_alignLeft="@+id/editText2"

 android:ems="10" />

 <EditText

 android:id="@+id/editText4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/textView5"

 android:layout_alignLeft="@+id/editText1"

 android:ems="10" />

Android

459

 <EditText

 android:id="@+id/editText5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView5"

 android:layout_alignBottom="@+id/textView5"

 android:layout_alignRight="@+id/editText4"

 android:ems="10" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText2"

 android:layout_below="@+id/editText1"

 android:onClick="open"

 android:text="@string/weather" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">JSONParser</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="location">Location</string>

 <string name="country">Country:</string>

 <string name="temperature">Temperature:</string>

 <string name="humidity">Humidity:</string>

 <string name="pressure">Pressure:</string>

 <string name="weather">Weather</string>

</resources>

Android

460

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.jsonparser"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.jsonparser.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

</application>

</manifest>

Android

461

Let's try to run our JSONParser application we just modified. We assume, you

had created your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run . icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Android

462

Now what you need to do is to enter any location in the location field. For

example, we have entered newyork. Press the weather button, when you enter

the location. The following screen would appear in you AVD:

Now when you press the weather button, the application will contact the Google

Weather API and will request for your necessary JSON location file and will parse

it. In case of newyork following file would be returned:

London Temperature from google weather api

Note that this temperature is in kelvin, so if you want to convert it into more

understandable format, you have to convert it into Celsius.

Android

463

Android allows your application to connect to LinkedIn and share data or any

kind of updates on LinkedIn. This chapter is about integrating LinkedIn into your

application.

There are two ways through which you can integrate LinkedIn and share

something from your application. These ways are listed below.

 LinkedIn SDK (Scribe)

 Intent Share

Integrating LinkedIn SDK

This is the first way of connecting with LinkedIn. You have to register your

application and then receive some Application Id, and then you have to

download the LinkedIn SDK and add it to your project. The steps are listed

below.

Registering your application

Create a new LinkedIn application

at https://www.LinkedIn.com/secure/developer. Click on add new application. It

is shown below:

Now fill in your application name, description and your website url. It is shown

below:

47. LINKEDIN INTEGRATION

Android

464

If everything works fine, you will receive an API key with the secret. Just copy

the API key and save it somewhere. It is shown in the image below:

Downloading SDK and integrating it

Download LinkedIn sdk here. Copy the scribe-1.3.0.jar jar into your project libs

folder.

Posting updates on LinkedIn application

Once everything is complete, you can run the LinkedIn samples which can be

found here.

Intent share

Intent share is used to share data between applications. In this strategy, we will

not handle the SDK stuff, but let the LinkedIn application handle it. We will

simply call the LinkedIn application and pass the data to share. This way, we can

share something on LinkedIn.

Android provides intent library to share data between activities and applications.

In order to use it as share intent, we have to specify the type of the share intent

to ACTION_SEND. Its syntax is given below:

Intent shareIntent = new Intent();

shareIntent.setAction(Intent.ACTION_SEND);

Next thing you need is to define the type of data to pass, and then pass the

data. Its syntax is given below:

shareIntent.setType("text/plain");

shareIntent.putExtra(Intent.EXTRA_TEXT, "Hello, from tutorialspoint");

startActivity(Intent.createChooser(shareIntent, "Share your thoughts"));

Apart from these methods, there are other methods available that allows intent

handling. They are listed below:

Android

465

Sr.No Method & description

1 addCategory(String category)

This method adds a new category to the intent.

2 createChooser(Intent target, CharSequence title)

Convenience function for creating a ACTION_CHOOSER Intent.

3 getAction()

This method retrieve the general action to be performed, such as

ACTION_VIEW.

4 getCategories()

This method returns the set of all categories in the intent.nt and the

current scaling event.

5 putExtra(String name, int value)

This method adds extended data to the intent.

6 toString()

This method returns a string containing a concise, human-readable

description of this object.

Example:

Here is an example demonstrating the use of IntentShare to share data on

LinkedIn. It creates a basic application that allows you to share some text on

LinkedIn.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as IntentShare under a package com.example.intentshare. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

Android

466

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.intentshare/MainActivity.java.

package com.example.intentshare;

import java.io.File;

import java.io.FileOutputStream;

import com.example.intentshare.R;

import android.app.Activity;

import android.content.DialogInterface;

import android.content.DialogInterface.OnClickListener;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.os.Environment;

import android.view.Menu;

import android.view.View;

import android.widget.ImageView;

import android.widget.Toast;

public class MainActivity extends Activity {

 private ImageView img;

Android

467

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 img = (ImageView) findViewById(R.id.imageView1);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void open(View view){

 Intent shareIntent = new Intent();

 shareIntent.setAction(Intent.ACTION_SEND);

 shareIntent.setType("text/plain");

 shareIntent.putExtra(Intent.EXTRA_TEXT, "Hello, from

 tutorialspoint");

 startActivity(Intent.createChooser(shareIntent, "Share your

 thoughts"));

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

Android

468

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="98dp"

 android:layout_marginTop="139dp"

 android:onClick="open"

 android:src="@drawable/tp" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="48dp"

 android:text="@string/tap"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">IntentShare</string>

Android

469

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="tap">Tap the button to share something</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.intentshare"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.intentshare.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

</application>

</manifest>

Android

470

Let's try to run your IntentShare application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

471

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Android

472

Now just tap on the image logo and you will see a list of share providers.

Android

473

Now just select LinkedIn from that list and then write any message. It is shown

in the image below:

Now, select the arrow button and then it would be posted on your LinkedIn

page. It is shown below:

Android

474

You can show progress of a task in android through loading progress bar. The

progress bar comes in two shapes. Loading bar and Loading Spinner. In this

chapter we will discuss spinner.

Spinner is used to display progress of those tasks whose total time of completion

is unknown. In order to use that, you just need to define it in the xml like this.

<ProgressBar

 android:id="@+id/progressBar1"

 style="?android:attr/progressBarStyleLarge"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true" />

After defining it in xml, you have to get its reference in java file through

ProgressBar class. Its syntax is given below:

private ProgressBar spinner;

spinner = (ProgressBar)findViewById(R.id.progressBar1);

After that you can make it disappear, and bring it back when needed through

setVisibility Method. Its syntax is given below:

spinner.setVisibility(View.GONE);

spinner.setVisibility(View.VISIBLE);

Apart from these Methods, there are other methods defined in the ProgressBar

class, that you can use to handle spinner more effectively.

Sr.No Method & description

1 isIndeterminate()

Indicate whether this progress bar is in indeterminate mode.

2 postInvalidate()

Cause an invalidate to happen on a subsequent cycle through the

event loop.

48. LOADING SPINNER

Android

475

3 setIndeterminate(boolean indeterminate)

Change the indeterminate mode for this progress bar.

4 invalidateDrawable(Drawable dr)

Invalidates the specified Drawable.

5 incrementSecondaryProgressBy(int diff)

Increase the progress bar's secondary progress by the specified

amount.

6 getProgressDrawable()

Get the drawable used, to draw the progress bar in progress mode.

Example:

Here is an example demonstrating the use of ProgressBar to handle spinner. It

creates a basic application that allows you to turn on the spinner on clicking the

button.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Spinner under a package com.example.spinner. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Android

476

Following is the content of the modified main activity file

src/com.example.spinner/MainActivity.java.

package com.example.spinner;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.ProgressBar;

public class MainActivity extends Activity {

 private ProgressBar spinner;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 spinner = (ProgressBar)findViewById(R.id.progressBar1);

 spinner.setVisibility(View.GONE);

 }

 public void load(View view){

 spinner.setVisibility(View.VISIBLE);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

Android

477

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="103dp"

 android:onClick="load"

 android:text="@string/hello_world" />

 <ProgressBar

 android:id="@+id/progressBar1"

 style="?android:attr/progressBarStyleLarge"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/button1"

 android:layout_centerHorizontal="true" />

</RelativeLayout>

Android

478

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Spinner</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">load spinner</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.spinner"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.spinner.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

Android

479

 </activity>

 </application>

</manifest>

Let's try to run our Loading Spinner application we just modified. We assume,

you had created your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Now click on the load spinner button to turn on the loading spinner. It is shown

in the image below:

Android

480

Android

481

An android application can run on many devices in many different regions. In

order to make your application more interactive, your application should handle

text, numbers, files etc. in ways appropriate to the locales where your

application will be used.

Here we will explain, how you can localize your application according to different

regions etc. We will localize the strings used in the application, and in the same

way other things can be localized.

Localizing Strings

In order to localize the strings used in your application, make a new folder

under res with name of values-local where local would be the replaced with the

region.

For example, in the case of italy, the values-it folder would be made under res.

It is shown in the image below:

Once that folder is made, copy the strings.xml from default folder to the folder

you have created and change its contents. For example, we have changed the

value of hello_world string.

Italy, res/values-it/strings.xml

<;?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello_world">Ciao mondo!</string>

</resources>

49. LOCALIZATION

Android

482

Spanish, res/values-it/strings.xml

<;?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello_world">Hola Mundo!</string>

</resources>

French, res/values-it/strings.xml

<;?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello_world">Bonjour le monde !</string>

</resources>

Apart from these languages, the region code of other languages have been given

in the table below:

Sr.No Language & code

1 Afrikanns

Code: af. Folder name: values-af

2 Arabic

Code: ar. Folder name: values-ar

3 Bengali

Code: bn. Folder name: values-bn

4 Czech

Code: cs. Folder name: values-cs

5 Chinese

Code: zh. Folder name: values-zh

6 German

Code: de. Folder name: values-de

Android

483

7 French

Code: fr. Folder name: values-fr

8 Japanese

Code: ja. Folder name: values-ja

Example:

Here is an example demonstrating the use of localization of strings. It creates a

basic application that allows you to customize your application according to US

and Italy region.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Locals under a package com.example.locals. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Create the res/values-it/string.xml to add necessary string

components.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.locals/MainActivity.java.

package com.example.locals;

Android

484

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

Android

485

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="174dp"

 android:text="@string/hello_world"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Locals</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

</resources>

Following is the content of the res/values-it/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Locals</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Ciao mondo!</string>

</resources>

Following is the content of AndroidManifest.xml file.

Android

486

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.locals"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.locals.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

487

Let's try to run our Localization application we just modified. We assume, you

had created yourAVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Android

488

Now change your device language setting from menu/system-settings/language

to italian.

Now open the application again and this time you will see hello world in italian

language. It has been shown below::

Android

489

A login application is the screen asking your credentials to login to some

particular application. You might have seen it when logging into Facebook,

twitter etc.

This chapter explains, how to create a login screen and how to manage security

when false attempts are made.

First you have to define two TextView asking username and password of the

user. The password TextView must have inputType set to password. Its syntax

is given below:

<EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:inputType="textPassword" />

<EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

/>

Define a button with login text and set its onClick Property. After that define

the function mentioned in the onClick property in the java file.

<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="login"

 android:text="@string/Login"

/>

In the java file, inside the method of onClick get the username and passwords

text using getText() and toString() method and match it with the text

using equals() function.

EditText username = (EditText)findViewById(R.id.editText1);

50. LOGIN SCREEN

Android

490

EditText password = (EditText)findViewById(R.id.editText2);

public void login(View view){

if(username.getText().toString().equals("admin") &&

password.getText().toString().equals("admin")){

//correcct password

}else{

//wrong password

}

The last thing you need to do is to provide a security mechanism, so that

unwanted attempts should be avoided. For this intialize a variable and on each

false attempt, decrement it. And when it reaches to 0, disable the login button.

int counter = 3;

counter--;

if(counter==0){

//disble the button, close the application etc.

}

Example:

Here is an example demonstrating a login application. It creates a basic

application that gives you only three attempts to login to an application.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as LoginScreen under a package com.example.loginscreen. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

3 Modify src/MainActivity.java file to add necessary code.

4 Modify the res/layout/activity_main to add respective XML

components.

Android

491

5 Modify the res/values/string.xml to add necessary string components.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.loginscreen/MainActivity.java.

package com.example.loginscreen;

import android.app.Activity;

import android.graphics.Color;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends Activity {

 private EditText username=null;

 private EditText password=null;

 private TextView attempts;

 private Button login;

 int counter = 3;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 username = (EditText)findViewById(R.id.editText1);

 password = (EditText)findViewById(R.id.editText2);

 attempts = (TextView)findViewById(R.id.textView5);

 attempts.setText(Integer.toString(counter));

 login = (Button)findViewById(R.id.button1);

Android

492

 }

 public void login(View view){

 if(username.getText().toString().equals("admin") &&

 password.getText().toString().equals("admin")){

 Toast.makeText(getApplicationContext(), "Redirecting...",

 Toast.LENGTH_SHORT).show();

 }

 else{

 Toast.makeText(getApplicationContext(), "Wrong Credentials",

 Toast.LENGTH_SHORT).show();

 attempts.setBackgroundColor(Color.RED);

 counter--;

 attempts.setText(Integer.toString(counter));

 if(counter==0){

 login.setEnabled(false);

 }

 }

}

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Android

493

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="18dp"

 android:text="@string/hello_world"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/textView1"

 android:layout_marginTop="50dp"

 android:text="@string/username"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editText1"

Android

494

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/textView2"

 android:layout_marginLeft="32dp"

 android:layout_toRightOf="@+id/textView2"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView2"

 android:layout_below="@+id/textView2"

 android:layout_marginTop="38dp"

 android:text="@string/password"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/textView3"

 android:layout_alignLeft="@+id/editText1"

 android:ems="10"

 android:inputType="textPassword" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/editText2"

Android

495

 android:layout_centerHorizontal="true"

 android:layout_marginTop="94dp"

 android:onClick="login"

 android:text="@string/Login" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView3"

 android:layout_below="@+id/textView3"

 android:layout_marginLeft="30dp"

 android:layout_marginTop="48dp"

 android:text="@string/attempts"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/textView1"

 android:layout_alignTop="@+id/textView4"

 android:text="TextView" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">LoginScreen</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Login Screen</string>

 <string name="username">Username:</string>

Android

496

 <string name="password">Password:</string>

 <string name="Login">Login:</string>

 <string name="attempts">Attempts Left:</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.loginscreen"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.loginscreen.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

497

Let's try to run our Login application we just modified. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Android

498

Type anything in the username and password field except admin, and then press

the login button. We put admin in the username field and nimda in the password

field. We got failed attempt. This is shown below:

Android

499

Do this two more time, and you will see that you have 0 login attempts left and

your login button is disabled.

Android

500

Now open the application again, and this time enter correct username as admin

and password as admin and click on login. You will be successfully logged in.

Android

501

Android provides many ways to control playback of audio/video files and

streams. One of this way is through a class called MediaPlayer.

Android is providing MediaPlayer class to access built-in mediaplayer services

like playing audio, video etc. In order to use MediaPlayer, we have to call a static

Method create() of this class. This method returns an instance of MediaPlayer

class. Its syntax is as follows:

MediaPlayer mediaPlayer = MediaPlayer.create(this, R.raw.song);

The second parameter is the name of the song that you want to play. You have

to make a new folder under your project with name raw and place the music file

into it.

Once you have created the Mediaplayer object you can call some methods to

start or stop the music. These methods are listed below.

mediaPlayer.start();

mediaPlayer.pause();

On call to start() method, the music will start playing from the beginning. If this

method is called again after the pause() method, the music would start playing

from where it is left and not from the beginning.

In order to start music from the beginning, you have to call reset() method. Its

syntax is given below.

mediaPlayer.reset();

Apart from the start and pause method, there are other methods provided by

this class for better dealing with audio/video files. These methods are listed

below:

Sr.No Method & description

1 isPlaying()

This method just returns true/false indicating the song is playing or

not.

2 seekTo(positon)

This method takes an integer, and move song to that particular

51. MEDIA PLAYER

Android

502

second.

3 getCurrentDuration()

This method returns the current position of song in milliseconds.

4 getDuration()

This method returns the total time duration of song in milliseconds.

5 reset()

This method resets the media player.

6 release()

This method releases any resource attached with MediaPlayer object.

7 setVolume(float leftVolume, float rightVolume)

This method sets the up down volume for this player.

8 setDataSource(FileDescriptor fd)

This method sets the data source of audio/video file.

9 selectTrack(int index)

This method takes an integer, and select the track from the list on

that particular index.

10 getTrackInfo()

This method returns an array of track information.

Example:

Here is an example demonstrating the use of MediaPlayer class. It creates a

basic media player that allows you to forward, backward, play and pause a song.

To experiment with this example, you need to run this on an actual device to

hear the audio sound.

Android

503

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as MediaPlayer under a package com.example.mediaplayer. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add MediaPlayer code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Create a new folder under MediaPlayer with name as raw and place an

mp3 music file in it with name as song.mp3.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.mediaplayer/MainActivity.java.

package com.example.mediaplayer;

import java.util.concurrent.TimeUnit;

import android.media.MediaPlayer;

import android.os.Bundle;

import android.os.Handler;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ImageButton;

import android.widget.SeekBar;

Android

504

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends Activity {

 public TextView songName,startTimeField,endTimeField;

 private MediaPlayer mediaPlayer;

 private double startTime = 0;

 private double finalTime = 0;

 private Handler myHandler = new Handler();;

 private int forwardTime = 5000;

 private int backwardTime = 5000;

 private SeekBar seekbar;

 private ImageButton playButton,pauseButton;

 public static int oneTimeOnly = 0;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 songName = (TextView)findViewById(R.id.textView4);

 startTimeField =(TextView)findViewById(R.id.textView1);

 endTimeField =(TextView)findViewById(R.id.textView2);

 seekbar = (SeekBar)findViewById(R.id.seekBar1);

 playButton = (ImageButton)findViewById(R.id.imageButton1);

 pauseButton = (ImageButton)findViewById(R.id.imageButton2);

 songName.setText("song.mp3");

 mediaPlayer = MediaPlayer.create(this, R.raw.song);

 seekbar.setClickable(false);

 pauseButton.setEnabled(false);

 }

 public void play(View view){

 Toast.makeText(getApplicationContext(), "Playing sound",

Android

505

 Toast.LENGTH_SHORT).show();

 mediaPlayer.start();

 finalTime = mediaPlayer.getDuration();

 startTime = mediaPlayer.getCurrentPosition();

 if(oneTimeOnly == 0){

 seekbar.setMax((int) finalTime);

 oneTimeOnly = 1;

 }

 endTimeField.setText(String.format("%d min, %d sec",

 TimeUnit.MILLISECONDS.toMinutes((long) finalTime),

 TimeUnit.MILLISECONDS.toSeconds((long) finalTime) -

 TimeUnit.MINUTES.toSeconds(TimeUnit.MILLISECONDS.

 toMinutes((long) finalTime)))

);

 startTimeField.setText(String.format("%d min, %d sec",

 TimeUnit.MILLISECONDS.toMinutes((long) startTime),

 TimeUnit.MILLISECONDS.toSeconds((long) startTime) -

 TimeUnit.MINUTES.toSeconds(TimeUnit.MILLISECONDS.

 toMinutes((long) startTime)))

);

 seekbar.setProgress((int)startTime);

 myHandler.postDelayed(UpdateSongTime,100);

 pauseButton.setEnabled(true);

 playButton.setEnabled(false);

 }

 private Runnable UpdateSongTime = new Runnable() {

 public void run() {

 startTime = mediaPlayer.getCurrentPosition();

 startTimeField.setText(String.format("%d min, %d sec",

 TimeUnit.MILLISECONDS.toMinutes((long) startTime),

 TimeUnit.MILLISECONDS.toSeconds((long) startTime) -

 TimeUnit.MINUTES.toSeconds(TimeUnit.MILLISECONDS.

Android

506

 toMinutes((long) startTime)))

);

 seekbar.setProgress((int)startTime);

 myHandler.postDelayed(this, 100);

 }

 };

 public void pause(View view){

 Toast.makeText(getApplicationContext(), "Pausing sound",

 Toast.LENGTH_SHORT).show();

 mediaPlayer.pause();

 pauseButton.setEnabled(false);

 playButton.setEnabled(true);

 }

 public void forward(View view){

 int temp = (int)startTime;

 if((temp+forwardTime)<=finalTime){

 startTime = startTime + forwardTime;

 mediaPlayer.seekTo((int) startTime);

 }

 else{

 Toast.makeText(getApplicationContext(),

 "Cannot jump forward 5 seconds",

 Toast.LENGTH_SHORT).show();

 }

 }

 public void rewind(View view){

 int temp = (int)startTime;

 if((temp-backwardTime)>0){

 startTime = startTime - backwardTime;

 mediaPlayer.seekTo((int) startTime);

 }

 else{

Android

507

 Toast.makeText(getApplicationContext(),

 "Cannot jump backward 5 seconds",

 Toast.LENGTH_SHORT).show();

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 }

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ImageButton

 android:id="@+id/imageButton3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

Android

508

 android:layout_alignParentLeft="true"

 android:layout_marginBottom="14dp"

 android:onClick="forward"

 android:src="@android:drawable/ic_media_ff" />

 <ImageButton

 android:id="@+id/imageButton4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignTop="@+id/imageButton2"

 android:layout_marginLeft="22dp"

 android:layout_toRightOf="@+id/imageButton2"

 android:onClick="rewind"

 android:src="@android:drawable/ic_media_rew" />

 <ImageButton

 android:id="@+id/imageButton2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignTop="@+id/imageButton1"

 android:layout_marginLeft="14dp"

 android:layout_toRightOf="@+id/imageButton1"

 android:onClick="pause"

 android:src="@android:drawable/ic_media_pause" />

 <ImageButton

 android:id="@+id/imageButton1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignTop="@+id/imageButton3"

 android:layout_marginLeft="24dp"

 android:layout_toRightOf="@+id/imageButton3"

 android:onClick="play"

Android

509

 android:src="@android:drawable/ic_media_play" />

 <SeekBar

 android:id="@+id/seekBar1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_above="@+id/imageButton3"

 android:layout_toLeftOf="@+id/textView2"

 android:layout_toRightOf="@+id/textView1" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/imageButton3"

 android:layout_alignTop="@+id/seekBar1"

 android:text="@string/inital_Time"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/imageButton4"

 android:layout_alignTop="@+id/seekBar1"

 android:text="@string/inital_Time"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/imageButton3"

 android:text="@string/hello_world"

Android

510

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_alignParentBottom="true"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/textView3"

 android:src="@drawable/ic_launcher" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView3"

 android:layout_alignBottom="@+id/textView3"

 android:layout_toRightOf="@+id/imageButton1"

 android:text="TextView" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">MediaPlayer</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Now Playing:</string>

 <string name="inital_Time">0 min, 0 sec</string>

</resources>

Following is the content of AndroidManifest.xml file.

Android

511

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.mediaplayer"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.mediaplayer.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

512

Let's try to run your MediaPlayer application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

513

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Android

514

By default you would see the pause button disabled. Now press play button to

disable it, and it would enable the pause button. It is shown in the picture

below:

Android

515

Uptill now, the music has been playing. Now press the pause button and see the

pause notification. This is shown below:

Android

516

Now when you press the play button again, the song will not play from the

beginning but from where it was paused. Now press the fast forward or

backward button to jump the song forward or backward to 5 seconds. A time

would come when the song cannot be jumped forward. At this point, the

notification would appear which would be something like this:

Your music would remain playing in the background while you are doing other

tasks in your mobile. In order to stop it, you have to exit this application from

background activities.

Android

517

Multi-touch gesture happens when more than one finger touches the screen at

the same time. Android allows us to detect these gestures.

Android system generates the following touch events whenever multiple fingers

touches the screen at the same time.

Sr.No Event & description

1 ACTION_DOWN

For the first pointer that touches the screen. This starts the gesture.

2 ACTION_POINTER_DOWN

For extra pointers that enter the screen beyond the first.

3 ACTION_MOVE

A change has happened during a press gesture.

4 ACTION_POINTER_UP

Sent when a non-primary pointer goes up.

5 ACTION_UP

Sent when the last pointer leaves the screen.

So in order to detect any of the above mentioned event, you need to override

onTouchEvent() method and check these events manually. Its syntax is given

below:

public boolean onTouchEvent(MotionEvent ev){

final int actionPeformed = ev.getAction();

switch(actionPeformed){

 case MotionEvent.ACTION_DOWN:{

 break;

 }

52. MULTITOUCH

Android

518

 case MotionEvent.ACTION_MOVE:{

 break;

 }

 return true;

}

In these cases, you can perform any calculation you like. For example zooming,

shrinking etc. In order to get the co-ordinates of the X and Y axis, you can

call getX() and getY()method. Its syntax is given below:

final float x = ev.getX();

final float y = ev.getY();

Apart from these methods, there are other methods provided by this

MotionEvent class for better dealing with multitouch. These methods are listed

below:

Sr.No Method & description

1 getAction()

This method returns the kind of action being performed.

2 getPressure()

This method returns the current pressure of this event for the first

index.

3 getRawX()

This method returns the original raw X coordinate of this event.

4 getRawY()

This method returns the original raw Y coordinate of this event.

5 getSize()

This method returns the size for the first pointer index.

6 getSource()

This method gets the source of the event.

Android

519

7 getXPrecision()

This method returns the precision of the X coordinates being reported.

8 getYPrecision()

This method returns the precision of the Y coordinates being reported.

Example:

Here is an example demonstrating the use of Multitouch. It creates a basic

Multitouch gesture application that allows you to view the co-ordinates when

multitouch is performed.

To experiment with this example, you need to run this on an actual device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Multitouch under a package com.example.multitouch. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add multitouch code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.multitouch/MainActivity.java.

package com.example.multitouch;

import android.app.Activity;

import android.os.Bundle;

Android

520

import android.view.Menu;

import android.view.MotionEvent;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

 float xAxis = 0f;

 float yAxis = 0f;

 float lastXAxis = 0f;

 float lastYAxis = 0f;

 private EditText xText,yText,moveX,moveY;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 xText = (EditText)findViewById(R.id.editText2);

 yText = (EditText)findViewById(R.id.editText3);

 moveX = (EditText)findViewById(R.id.editText1);

 moveY = (EditText)findViewById(R.id.editText4);

 }

 @Override

 public boolean onTouchEvent(MotionEvent ev){

 final int actionPeformed = ev.getAction();

 switch(actionPeformed){

 case MotionEvent.ACTION_DOWN:{

 final float x = ev.getX();

 final float y = ev.getY();

 lastXAxis = x;

 lastYAxis = y;

 xText.setText(Float.toString(lastXAxis));

 yText.setText(Float.toString(lastYAxis));

 break;

Android

521

 }

 case MotionEvent.ACTION_MOVE:{

 final float x = ev.getX();

 final float y = ev.getY();

 final float dx = x - lastXAxis;

 final float dy = y - lastYAxis;

 xAxis += dx;

 yAxis += dy;

 moveX.setText(Float.toString(xAxis));

 moveY.setText(Float.toString(yAxis));

 break;

 }

 }

 return true;

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

Android

522

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <EditText

 android:id="@+id/editText3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText2"

 android:layout_below="@+id/editText2"

 android:ems="10" />

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_marginTop="25dp"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText3"

 android:layout_below="@+id/editText3"

 android:ems="10" >

 </EditText>

 <EditText

 android:id="@+id/editText4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

523

 android:layout_alignLeft="@+id/editText1"

 android:layout_below="@+id/editText1"

 android:ems="10" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/editText3"

 android:layout_alignParentLeft="true"

 android:text="@string/xaxis"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editText3"

 android:layout_alignRight="@+id/textView2"

 android:text="@string/yaxis"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/editText4"

 android:layout_alignLeft="@+id/textView3"

 android:text="@string/MoveX"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

Android

524

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/editText4"

 android:layout_alignBottom="@+id/editText4"

 android:layout_alignRight="@+id/textView4"

 android:text="@string/MoveY"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView6"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_centerHorizontal="true"

 android:layout_marginBottom="109dp"

 android:text="@string/perform"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Gestures</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Pinch to zoom in or out!</string>

 <string name="xaxis">X-Axis</string>

 <string name="yaxis">Y-Axis</string>

 <string name="MoveX">Move X</string>

 <string name="MoveY">Move Y</string>

 <string name="perform">Touch here</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

Android

525

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.multitouch"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.multitouch.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

526

Let's try to run your Multitouch application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

527

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Android

528

By default you will see nothing in any field. Now just tap on the Touch here area

and see some data in the fields. It is shown below:

Android

529

You will see that the data in the Move field is 0, because only a single touch

gesture has been performed. Now tap on the screen and start dragging your

finger. You will see the change in the data of the move field. It is shown below:

Android

530

We will see how you can provide navigation forward and backward between an

application in this chapter. We will first look at how to provide up navigation in

an application.

Providing Up Navigation

The up navigation will allow our application to move to previous activity from the

next activity. It can be done like this.

To implement Up navigation, the first step is to declare which activity is the

appropriate parent for each activity. You can do it by

specifying parentActivityName attibute in an activity. Its syntax is given

below:

android:parentActivityName="com.example.test.MainActivity"

After that you need to call setDisplayHomeAsUpEnabled method

of getActionBar() in the onCreate method of the activity. This will enable the

back button in the top action bar.

getActionBar().setDisplayHomeAsUpEnabled(true);

The last thing you need to do is to override onOptionsItemSelected method.

When the user presses it, your activity receives a call to

onOptionsItemSelected(). The ID for the action is android.R.id.home. Its

syntax is given below:

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case android.R.id.home:

NavUtils.navigateUpFromSameTask(this);

return true;

}

}

Handling device back button

Since you have enabled your back button to navigate within your application,

you might want to put the application close function in the device back button.

53. NAVIGATION

Android

531

It can be done by overriding onBackPressed and then

calling moveTaskToBack and finish method. Its syntax is given below:

@Override

public void onBackPressed() {

 moveTaskToBack(true);

 MainActivity2.this.finish();

}

Apart from this setDisplayHomeAsUpEnabled method, there are other methods

available in ActionBar API class. They are listed below:

Sr.No Method & description

1 addTab(ActionBar.Tab tab, boolean setSelected)

This method adds a tab for use in tabbed navigation mode.

2 getSelectedTab()

This method returns the currently selected tab if in tabbed navigation

mode and at least one tab is present there. If there is none than it

returns null.

3 hide()

This method hides the ActionBar if it is currently showing.

4 removeAllTabs()

This method remove all tabs from the action bar and deselects the

current tab.

5 selectTab(ActionBar.Tab tab)

This method selects the specified tab.

Example:

The below example demonstrates the use of Navigation. It creates a basic

application that allows you to navigate within your application.

To experiment with this example, you need to run this on an actual device or in

an emulator.

Android

532

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as test under a package com.example.test. While creating this project,

make sure you Target SDK and Compile With at the latest version of

Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add Activity code.

3 Create a new activity with the name of MainActivity2 and edit it to add

activity code.

4 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

5 Modify layout XML file res/layout/activity_main_activity2.xml add any

GUI component if required.

6 Modify res/values/string.xml file and add necessary string

components.

7 Modify AndroidManifest.xml to add necessary code.

8 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.test/MainActivity.java.

package com.example.test;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

public class MainActivity extends Activity {

Android

533

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void activity2(View view){

 Intent intent = new

 Intent(this,com.example.test.MainActivity2.class);

 startActivity(intent);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the content of src/com.example.test/MainActivity2.java.

package com.example.test;

import android.annotation.SuppressLint;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.support.v4.app.NavUtils;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

Android

534

public class MainActivity2 extends Activity {

 @SuppressLint("NewApi")

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main_activity2);

 getActionBar().setDisplayHomeAsUpEnabled(true);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main_activity2, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 // Respond to the action bar's Up/Home button

 case android.R.id.home:

 NavUtils.navigateUpFromSameTask(this);

 return true;

 }

 return super.onOptionsItemSelected(item);

 }

 @Override

 public void onBackPressed() {

 moveTaskToBack(true);

 MainActivity2.this.finish();

 }

}

Here is the content of activity_main.xml.

Android

535

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="87dp"

 android:text="@string/test1"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:onClick="activity2"

 android:text="@string/go2" />

</RelativeLayout>

Here is the content of activity_main_activity2.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

Android

536

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity2" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="125dp"

 android:text="@string/test2"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">test</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="test1">This is activity 1</string>

 <string name="test2">This is activity 2</string>

 <string name="go1">Go to activity 1</string>

 <string name="go2">Go to activity 2</string>

 <string name="title_activity_main_activity2">MainActivity2</string>

Android

537

</resources>

Here is the content of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.test"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="14" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.test.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="com.example.test.MainActivity2"

 android:label="@string/title_activity_main_activity2"

 android:parentActivityName="com.example.test.MainActivity" >

 </activity>

 </application>

Android

538

</manifest>

Let's try to run your Navigation application. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one

of your project's activity files and click Run icon from the toolbar. Eclipse

installs the app on your AVD and starts it and if everything is fine with your

setup and application, it will display following Emulator window:

Android

539

Now just press the go to activity2 button and the following screen will be shown

to you.

Android

540

Now at the top right corner, you will see the back button. Just press the back

button and you will be brought to the first activity.

Android

541

Now again go to activity2 and this time press the device exit button. You will see

your application will be closed. It is shown in the image below:

Android

542

Android lets your application connect to the internet or any other local network

and allows you to perform network operations.

A device can have various types of network connections. This chapter focuses on

using either a Wi-Fi or a mobile network connection.

Checking Network Connection

Before you perform any network operations, you must first check if you are

connected to that network or internet etc. For this, android

provides ConnectivityManager class. You need to instantiate an object of this

class by calling getSystemService() method. Its syntax is given below:

ConnectivityManager check = (ConnectivityManager)

this.context.getSystemService(Context.CONNECTIVITY_SERVICE);

Once you instantiate the object of ConnectivityManager class, you can use

getAllNetworkInfo method to get the information of all the networks. This

method returns an array of NetworkInfo. So you have to receive it like this.

NetworkInfo[] info = check.getAllNetworkInfo();

The last thing you need to do is to check Connected State of the network. Its

syntax is given below:

for (int i = 0; i<info.length; i++){

 if (info[i].getState() == NetworkInfo.State.CONNECTED){

 Toast.makeText(context, "Internet is connected

 Toast.LENGTH_SHORT).show();

 }

}

Apart from this connected states, there are other states a network can achieve.

They are listed below:

Sr.No State

1 Connecting

54. NETWORK CONNECTION

Android

543

2 Disconnected

3 Disconnecting

4 Suspended

5 Unknown

Performing Network Operations

After checking that you are connected to the internet, you can perform any

network operation. Here we are fetching the html of a website from a url.

Android provides HttpURLConnection and URL class to handle these

operations. You need to instantiate an object of URL class by providing the link

of website. Its syntax is as follows:

String link = "http://www.google.com";

URL url = new URL(link);

After that you need to call openConnection method of url class and receive it in

an HttpURLConnection object. After that you need to call the connect method of

HttpURLConnection class.

HttpURLConnection conn = (HttpURLConnection) url.openConnection();

conn.connect();

And the last thing you need to do is to fetch the HTML from the website. For this

you will use InputStream and BufferedReader class. Its syntax is given below:

InputStream is = conn.getInputStream();

BufferedReader reader =new BufferedReader(new InputStreamReader(is, "UTF-

8"));

String webPage = "",data="";

while ((data = reader.readLine()) != null){

 webPage += data + "\n";

}

Apart from this connect method, there are other methods available in

HttpURLConnection class. They are listed below:

Android

544

Sr.No Method & description

1 disconnect()

This method releases this connection so that its resources may be

either reused or closed.

2 getRequestMethod()

This method returns the request method which will be used to make

the request to the remote HTTP server.

3 getResponseCode()

This method returns response code returned by the remote HTTP

server.

4 setRequestMethod(String method)

This method Sets the request command which will be sent to the

remote HTTP server.

5 usingProxy()

This method returns whether this connection uses a proxy server or

not.

Example:

The below example demonstrates the use of HttpURLConnection class. It creates

a basic application that allows you to download HTML from a given webpage.

To experiment with this example, you need to run this on an actual device on

which wifi internet is connected.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as NetworkConnection under a package

com.example.networkconnection. While creating this project, make

sure you Target SDK and Compile With at the latest version of Android

SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add Activity code.

Android

545

3 Create src/DownloadWebPage.java file to add NetworkConnection

code.

4 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

5 Modify res/values/string.xml file and add necessary string

components.

6 Modify AndroidManifest.xml to add necessary permissions.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content

of src/com.example.networkconnection/MainActivity.java.

package com.example.networkconnection;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends Activity {

 private EditText urlField;

 private TextView data;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 urlField = (EditText)findViewById(R.id.editText1);

 data = (TextView)findViewById(R.id.textView2);

Android

546

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void download(View view){

 String url = urlField.getText().toString();

 new DownloadWebPage(this,data).execute(url);

 }

}

Here is the content

of src/com.example.networkconnection/DownloadWebPage.java.

package com.example.networkconnection;

import java.io.BufferedReader;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import android.content.Context;

import android.net.ConnectivityManager;

import android.net.NetworkInfo;

import android.os.AsyncTask;

import android.widget.EditText;

import android.widget.TextView;

Android

547

import android.widget.Toast;

public class DownloadWebPage extends AsyncTask{

 private TextView dataField;

 private Context context;

 public DownloadWebPage(Context context,TextView dataField) {

 this.context = context;

 this.dataField = dataField;

 }

 //check Internet connection.

 private void checkInternetConenction(){

 ConnectivityManager check = (ConnectivityManager) this.context.

 getSystemService(Context.CONNECTIVITY_SERVICE);

 if (check != null)

 {

 NetworkInfo[] info = check.getAllNetworkInfo();

 if (info != null)

 for (int i = 0; i <info.length; i++)

 if (info[i].getState() == NetworkInfo.State.CONNECTED)

 {

 Toast.makeText(context, "Internet is connected",

 Toast.LENGTH_SHORT).show();

 }

 }

 else{

 Toast.makeText(context, "not conencted to internet",

 Toast.LENGTH_SHORT).show();

 }

 }

 protected void onPreExecute(){

Android

548

 checkInternetConenction();

 }

 @Override

 protected String doInBackground(String... arg0) {

 try{

 String link = (String)arg0[0];

 URL url = new URL(link);

 HttpURLConnection conn = (HttpURLConnection)

 url.openConnection();

 conn.setReadTimeout(10000);

 conn.setConnectTimeout(15000);

 conn.setRequestMethod("GET");

 conn.setDoInput(true);

 conn.connect();

 InputStream is = conn.getInputStream();

 BufferedReader reader = new BufferedReader(new InputStreamReader

 (is, "UTF-8"));

 String data = null;

 String webPage = "";

 while ((data = reader.readLine()) != null){

 webPage += data + "\n";

 }

 return webPage;

 }catch(Exception e){

 return new String("Exception: " + e.getMessage());

 }

 }

 @Override

 protected void onPostExecute(String result){

 this.dataField.setText(result);

 }

}

Android

549

Here is the content of activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="30dp"

 android:text="@string/url"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/textView1"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="18dp"

 android:ems="10" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

Android

550

 android:layout_height="wrap_content"

 android:layout_below="@+id/editText1"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="69dp"

 android:onClick="download"

 android:text="@string/click" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText1"

 android:layout_below="@+id/button1"

 android:layout_marginTop="56dp"

 android:text="@string/google"

 android:textAppearance="?android:attr/textAppearanceSmall" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">NetworkConnection</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="url">URL here</string>

 <string name="click">Download WebPage</string>

 <string name="google">http://www.tutorialspoint.com</string>

</resources>

Android

551

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.networkconnection"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <uses-permission

 android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.networkconnection.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

552

Let's try to run your NetworkConnection application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

553

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

554

Now just type in your website whose HTML you want to fetch. In our case we are

typing tutorialspoint.com. It is shown in the figure:

Android

555

Now press the Download WebPage button and wait for a few seconds and HTML

will be downloaded and will be shown to you. It is shown in the figure below:

Android

556

NFC stands for Near Field Communication, and as the name implies it

provides a wireless communication mechanism between two compatible devices.

NFC is a short range wireless technology having a range of 4cm or less for two

devices to share data.

How It Works:

Like Bluetooth and WiFi, and all manner of other wireless signals, NFC works on

the principle of sending information over radio waves. NFC data is send through

electromagnetic induction between two devices.

NFC works on the basis of tags, it allows you to share some amount of data

between an NFC tag and an android powered device or between two android

powered devices. Tags have various set of complexities. The Data stored in the

tag can be written in a variety of formats, but android APIs are based around a

NFC standard called as NFC Data Exchange Format (NDEF).

The transmission frequency for data across NFC is 13.56 megahertz, and data

can be sent at either 106, 212 or 424 kilobytes per second, which is quick

enough for a range of data transfers from contact details to swapping pictures,

songs and videos.

Android powered devices with NFC supports following three main modes of

operations:

Three Modes of Operation

 Reader/Writer Mode:

 It allows the NFC device to read or write passive NFC tags.

 P2P mode:

 This mode allows NFC device to exchange data with other NFC peers.

 Card emulation mode:

 It allows the NFC device itself to act as an NFC card, so it can be accessed

 by an external NFC reader.

How it works with Android:

To get the permission to access NFC Hardware, add the following permission in

your Android.Manifest file.

55. NFC GUIDE

Android

557

<uses-sdk android:minSdkVersion="10"/>

First thing to note is that not all android powered devices provide NFC

technology. So to make sure that your application shows up in google play for

only those devices that have NFC Hardware, add the following line in

your Android.Manifest file.

<uses-feature android:name="android.hardware.nfc"

android:required="true"/>

Android provides an android.nfc package for communicating with another device.

This package contains following classes:

Sr.No Classes

1 NdefMessage

It represents an immutable NDEF Message. .

2 NdefRecord

It represents an immutable NDEF Record.

3 NfcAdapter

It represents the local NFC adapter.

4 NfcEvent

It wraps information associated with any NFC event.

5 NfcManager

It is a high level manager used to obtain an instance of an NfcAdapter.

6 Tag

It represents an NFC tag that has been discovered.

NFC tags system works in android with the help of some intent filters that are

listed below:

Android

558

Sr.No Filters & Features

1 ACTION_NDEF_DISCOVERED

This intent is used to start an Activity when a tag contains an NDEF

payload.

2 ACTION_TECH_DISCOVERED

This intent is used to start an activity if the tag does not contain NDEF

data, but is of known technology.

3 ACTION_TAG_DISCOVERED

This intent is started if no activities handle the

ACTION_NDEF_DISCOVERED or ACTION_TECH_DISCOVERED intents.

To code an application that uses NFC technology is complex so don't use it in

your app unless necessary. The use of NFC is not common in devices but it is

getting popular. Let's see what is the future of this technology:

Future Applications

With this technology growing day by day and due to introduction of contact-less

payment systems this technology is getting a boom. A service known as Google

Wallet is already introduced in the US whose purpose is to make our

smartphones a viable alternative to credit and transport cards.

Android

559

Here, in this chapter, we are going to explain, how you can integrate PHP and

MYSQL with your android application. This is very useful in case you have a

webserver, and you want to access its data on your android application.

MYSQL is used as a database at the webserver and PHP is used to fetch data

from the database. Our application will communicate with the PHP page with

necessary parameters and PHP will contact MYSQL database and will fetch the

result and return the results to us.

PHP - MYSQL

Creating Database

MYSQL database can be created easily using this simple script. The CREATE

DATABASE statement creates the database.

<?php

$con=mysqli_connect("example.com","username","password");

$sql="CREATE DATABASE my_db";

if (mysqli_query($con,$sql))

{

 echo "Database my_db created successfully";

}

?>

Creating Tables

Once database is created, it is time to create some tables in the database.

The CREATE TABLE statement creates the database.

<?php

$con=mysqli_connect("example.com","username","password","my_db");

$sql="CREATE TABLE table1(Username CHAR(30),Password CHAR(30),Role

CHAR(30))";

if (mysqli_query($con,$sql))

{

 echo "Table have been created successfully";

56. PHP/MYSQL

Android

560

}

?>

Inserting Values in tables

When the database and tables are created,it is time to insert some data into the

tables. The Insert Into statement creates the database.

<?php

$con=mysqli_connect("example.com","username","password","my_db");

$sql="INSERT INTO table1 (FirstName, LastName, Age) VALUES ('admin',

'admin','adminstrator')";

if (mysqli_query($con,$sql))

{

 echo "Values have been inserted successfully";

}

?>

PHP - GET and POST methods

PHP is also used to fetch the record from the mysql database once it is created.

In order to fetch record some information must be passed to PHP page regarding

what record to be fetched.

The first method to pass information is through GET method in

which $_GET command is used. The variables are passed in the url and the

record is fetched. Its syntax is given below:

<?php

$con=mysqli_connect("example.com","username","password","database name");

if (mysqli_connect_errno($con))

{

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

$username = $_GET['username'];

$password = $_GET['password'];

$result = mysqli_query($con,"SELECT Role FROM table1 where

Username='$username' and Password='$password'");

$row = mysqli_fetch_array($result);

Android

561

$data = $row[0];

if($data){

echo $data;

}

mysqli_close($con);

?>

The second method is to use POST method. The only change in the above script

is to replace $_GET with $_POST. In Post method, the variables are not passed

through URL.

Android - Connecting MYSQL

Connecting Via Get Method

There are two ways to connect to MYSQL via PHP page. The first one is

called Get method. We will use HttpGet and HttpClient class to connect. Their

syntax is given below:

URL url = new URL(link);

HttpClient client = new DefaultHttpClient();

HttpGet request = new HttpGet();

request.setURI(new URI(link));

After that you need to call execute method of HttpClient class and receive it in a

HttpResponse object. After that you need to open streams to receive the data.

HttpResponse response = client.execute(request);

BufferedReader in = new BufferedReader

(new InputStreamReader(response.getEntity().getContent()));

Connecting Via Post Method

In the Post method, the URLEncoder, URLConnection class will be used. The

urlencoder will encode the information of the passing variables. It's syntax is

given below:

URL url = new URL(link);

String data = URLEncoder.encode("username", "UTF-8")

+ "=" + URLEncoder.encode(username, "UTF-8");

data += "&" + URLEncoder.encode("password", "UTF-8")

Android

562

+ "=" + URLEncoder.encode(password, "UTF-8");

URLConnection conn = url.openConnection();

The last thing you need to do is to write this data to the link. After writing, you

need to open stream to receive the responded data.

OutputStreamWriter wr = new OutputStreamWriter(conn.getOutputStream());

wr.write(data);

BufferedReader reader = new BufferedReader(new

InputStreamReader(conn.getInputStream()));

Example:

The below example is a complete example of connecting your android application

with MYSQL database via PHP page. It creates a basic application that allows you

to login using GET and POST method.

PHP - MYSQL part

In this example a database with the name of temp has been created at

000webhost.com. In that database, a table has been created with the name of

table1. This table has three fields. (Username, Password, Role). The table has

only one record which is ("admin","admin","adminstrator").

The php page has been given below which takes parameters by post method.

<?php

$con=mysqli_connect("mysql10.000webhost.com","username","password","db_na

me");

if (mysqli_connect_errno($con))

{

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

$username = $_POST['username'];

$password = $_POST['password'];

$result = mysqli_query($con,"SELECT Role FROM table1 where

Username='$username' and Password='$password'");

$row = mysqli_fetch_array($result);

$data = $row[0];

if($data){

Android

563

echo $data;

}

mysqli_close($con);

?>

Android Part

To experiment with this example, you need to run this on an actual device on

which wifi internet is connected.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as PHPMYSQL under a package com.example.phpmysql. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add Activity code.

3 Create src/SiginActivity.java file to add PHPMYSQL code.

4 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

5 Modify res/values/string.xml file and add necessary string

components.

6 Modify AndroidManifest.xml to add necessary permissions.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.phpmysql/MainActivity.java.

package com.example.phpmysql;

import android.app.Activity;

import android.os.Bundle;

Android

564

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends Activity {

 private EditText usernameField,passwordField;

 private TextView status,role,method;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 usernameField = (EditText)findViewById(R.id.editText1);

 passwordField = (EditText)findViewById(R.id.editText2);

 status = (TextView)findViewById(R.id.textView6);

 role = (TextView)findViewById(R.id.textView7);

 method = (TextView)findViewById(R.id.textView9);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void login(View view){

 String username = usernameField.getText().toString();

 String password = passwordField.getText().toString();

 method.setText("Get Method");

 new SigninActivity(this,status,role,0).execute(username,password);

 }

Android

565

 public void loginPost(View view){

 String username = usernameField.getText().toString();

 String password = passwordField.getText().toString();

 method.setText("Post Method");

 new SigninActivity(this,status,role,1).execute(username,password);

 }

}

Here is the content of src/com.example.phpmysql/SigninActivity.java.

package com.example.phpmysql;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.net.URI;

import java.net.URL;

import java.net.URLConnection;

import java.net.URLEncoder;

import org.apache.http.HttpResponse;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.impl.client.DefaultHttpClient;

import android.content.Context;

import android.os.AsyncTask;

import android.widget.TextView;

public class SigninActivity extends AsyncTask<String,Void,String>{

 private TextView statusField,roleField;

 private Context context;

Android

566

 private int byGetOrPost = 0;

 //flag 0 means get and 1 means post.(By default it is get.)

 public SigninActivity(Context context,TextView statusField,

 TextView roleField,int flag) {

 this.context = context;

 this.statusField = statusField;

 this.roleField = roleField;

 byGetOrPost = flag;

 }

 protected void onPreExecute(){

 }

 @Override

 protected String doInBackground(String... arg0) {

 if(byGetOrPost == 0){ //means by Get Method

 try{

 String username = (String)arg0[0];

 String password = (String)arg0[1];

 String link =

 "http://myphpmysqlweb.hostei.com/login.php?username="

 +username+"&password="+password;

 URL url = new URL(link);

 HttpClient client = new DefaultHttpClient();

 HttpGet request = new HttpGet();

 request.setURI(new URI(link));

 HttpResponse response = client.execute(request);

 BufferedReader in = new BufferedReader

 (new InputStreamReader(response.getEntity().getContent()));

 StringBuffer sb = new StringBuffer("");

 String line="";

 while ((line = in.readLine()) != null) {

 sb.append(line);

Android

567

 break;

 }

 in.close();

 return sb.toString();

 }catch(Exception e){

 return new String("Exception: " + e.getMessage());

 }

 }

 else{

 try{

 String username = (String)arg0[0];

 String password = (String)arg0[1];

 String link="http://myphpmysqlweb.hostei.com/loginpost.php";

 String data = URLEncoder.encode("username", "UTF-8")

 + "=" + URLEncoder.encode(username, "UTF-8");

 data += "&" + URLEncoder.encode("password", "UTF-8")

 + "=" + URLEncoder.encode(password, "UTF-8");

 URL url = new URL(link);

 URLConnection conn = url.openConnection();

 conn.setDoOutput(true);

 OutputStreamWriter wr = new OutputStreamWriter

 (conn.getOutputStream());

 wr.write(data);

 wr.flush();

 BufferedReader reader = new BufferedReader

 (new InputStreamReader(conn.getInputStream()));

 StringBuilder sb = new StringBuilder();

 String line = null;

 // Read Server Response

 while((line = reader.readLine()) != null)

 {

 sb.append(line);

 break;

 }

Android

568

 return sb.toString();

 }catch(Exception e){

 return new String("Exception: " + e.getMessage());

 }

 }

 }

 @Override

 protected void onPostExecute(String result){

 this.statusField.setText("Login Successful");

 this.roleField.setText(result);

 }

}

Here is the content of activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/editText1"

 android:layout_below="@+id/editText1"

 android:layout_marginTop="25dp"

 android:ems="10"

 android:inputType="textPassword" >

Android

569

 </EditText>

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="44dp"

 android:ems="10" >

 <requestFocus android:layout_width="wrap_content" />

 </EditText>

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editText1"

 android:layout_alignParentLeft="true"

 android:text="@string/Username" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:text="@string/App"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <TextView

 android:id="@+id/textView7"

Android

570

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/textView5"

 android:layout_alignLeft="@+id/textView6"

 android:text="@string/Role"

 android:textAppearance="?android:attr/textAppearanceMedium"

 android:textSize="10sp" />

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/textView6"

 android:layout_marginTop="27dp"

 android:layout_toLeftOf="@+id/editText1"

 android:text="@string/LoginRole" />

 <TextView

 android:id="@+id/textView8"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/textView6"

 android:layout_alignLeft="@+id/textView5"

 android:layout_marginBottom="27dp"

 android:text="@string/method" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView8"

 android:layout_below="@+id/button1"

 android:layout_marginTop="86dp"

 android:text="@string/LoginStatus" />

Android

571

 <TextView

 android:id="@+id/textView6"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignTop="@+id/textView4"

 android:layout_centerHorizontal="true"

 android:text="@string/Status"

 android:textAppearance="?android:attr/textAppearanceMedium"

 android:textSize="10sp" />

 <TextView

 android:id="@+id/textView9"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/textView8"

 android:layout_alignLeft="@+id/textView6"

 android:text="@string/Choose"

 android:textAppearance="?android:attr/textAppearanceMedium"

 android:textSize="10sp" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerVertical="true"

 android:layout_toRightOf="@+id/textView6"

 android:onClick="loginPost"

 android:text="@string/LoginPost" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

572

 android:layout_alignBaseline="@+id/button2"

 android:layout_alignBottom="@+id/button2"

 android:layout_alignLeft="@+id/textView2"

 android:onClick="login"

 android:text="@string/LoginGet" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/editText2"

 android:layout_alignBottom="@+id/editText2"

 android:layout_alignParentLeft="true"

 android:text="@string/Password" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">PHPMYSQL</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="Username">Username</string>

 <string name="Password">Password</string>

 <string name="LoginGet">Login - Get</string>

 <string name="LoginPost">Login - Post</string>

 <string name="App">Login Application</string>

 <string name="LoginStatus">Login Status</string>

 <string name="LoginRole">Login Role</string>

 <string name="Status">Not login</string>

 <string name="Role">Not assigned</string>

 <string name="method">Login Method</string>

Android

573

 <string name="Choose">Choose Method</string>

</resources>

Here is the content of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.phpmysql"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <uses-permission

 android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.phpmysql.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

574

Let's try to run your PHPMYSQL application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

575

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

576

Now just type in your username and password. In our case we are typing admin

as username and password. It is shown in the figure:

Android

577

Now press the Get button, wait a few seconds and response will be downloaded

and will be shown to you. In this case, the response is the ROLE that is fetched

in case of admin as username and password. It is shown in the figure below:

Android

578

Now again press the POST button and same result woud appear. It is shown in

the figure below:

Android

579

The easiest way to make a progress circle is using a class called ProgressDialog.

The loading bar can also be made through that class. The only logical difference

between bar and circle is, that the former is used when you know the total time

for waiting for a particular task whereas the latter is used when you do not know

the waiting time.

In order to this, you need to instantiate an object of this class. Its syntax is.

ProgressDialog progress = new ProgressDialog(this);

Now you can set some properties of this dialog. Such as, its style,its text etc.

progress.setMessage("Downloading Music :) ");

progress.setProgressStyle(ProgressDialog.STYLE_SPINNER);

progress.setIndeterminate(true);

Apart from these methods, there are other methods that are provided by the

ProgressDialog class.

Sr. No Style and description

1 getMax()

This method returns the maximum value of the progress.

2 incrementProgressBy(int diff)

This method increment the progress bar by the difference of value

passed as a parameter.

3 setIndeterminate(boolean indeterminate)

This method sets the progress indicator as determinate or

indeterminate.

4 setMax(int max)

This method sets the maximum value of the progress dialog.

5 setProgress(int value)

This method is used to update the progress dialog with some specific

57. PROGRESS CIRCLE

Android

580

value.

6 show(Context context, CharSequence title, CharSequence

message)

This is a static method, used to display progress dialog.

Example:

This example demonstrates the spinning use of the progress dialog. It display a

spinning progress dialog on pressing the button.

To experiment with this example, you need to run this on an actual device on

after developing the application according to the steps below.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as ProgressDialog under a package com.example.progressdialog.

While creating this project, make sure you Target SDK and Compile

With at the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add progress code to display the

spinning progress dialog.

3 Modify res/layout/activity_main.xml file to add respective XML code.

4 Modify res/values/string.xml file to add a message as a string

constant.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.progressdialog/MainActivity.java.

package com.example.progressdialog;

import com.example.progressdialog.R;

Android

581

import android.os.Bundle;

import android.app.Activity;

import android.app.ProgressDialog;

import android.view.Menu;

import android.view.View;

public class MainActivity extends Activity {

 private ProgressDialog progress;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 progress = new ProgressDialog(this);

 }

 public void open(View view){

 progress.setMessage("Downloading Music :) ");

 progress.setProgressStyle(ProgressDialog.STYLE_SPINNER);

 progress.setIndeterminate(true);

 progress.show();

 final int totalProgressTime = 100;

 final Thread t = new Thread(){

 @Override

 public void run(){

 int jumpTime = 0;

 while(jumpTime < totalProgressTime){

 try {

 sleep(200);

Android

582

 jumpTime += 5;

 progress.setProgress(jumpTime);

 } catch (InterruptedException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 };

 t.start();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Modify the content of res/layout/activity_main.xml to the following:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

Android

583

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="150dp"

 android:onClick="open"

 android:text="@string/download_button" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="19dp"

 android:text="@string/download_text"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Modify the res/values/string.xml to the following:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">ProgressDialog</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="download_button">Download</string>

 <string name="download_text">Press the button to download

music</string>

</resources>

Android

584

This is the default AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.progressdialog"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.progressdialog.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

585

Let's try to run your ProgressDialog application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

586

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

587

Just press the button to start the Progress Dialog. After pressing, following

screen would appear:

Android

588

Progress bars are used to show progress of a task. For example, when you are

uploading or downloading something from the internet, it is better to show the

progress of download/upload to the user.

In android there is a class called ProgressDialog that allows you to create

progress bar. In order to do this, you need to instantiate an object of this class.

Its syntax is.

ProgressDialog progress = new ProgressDialog(this);

Now you can set some properties of this dialog. Such as, its style, its text etc.

progress.setMessage("Downloading Music :) ");

progress.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);

progress.setIndeterminate(true);

Apart from these methods, there are other methods that are provided by the

ProgressDialog class

Sr.

NO

Title and description

1 getMax()

This method returns the maximum value of the progress.

2 incrementProgressBy(int diff)

This method increments the progress bar by the difference of value

passed as a parameter.

3 setIndeterminate(boolean indeterminate)

This method sets the progress indicator as determinate or

indeterminate.

4 setMax(int max)

This method sets the maximum value of the progress dialog.

5 setProgress(int value)

58. PROGRESS BAR USING PROGRESS
DIALOG

Android

589

This method is used to update the progress dialog with some specific

value.

6 show(Context context, CharSequence title, CharSequence

message)

This is a static method, used to display progress dialog.

Example:

This example demonstrates the horizontol use of the progress dialog which is in

fact a progress bar. It display a progress bar on pressing the button.

To experiment with this example, you need to run this on an actual device after

developing the application according to the steps below.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as ProgressDialog under a package com.example.progressdialog.

While creating this project, make sure you Target SDK and Compile

With at the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add progress code to display the

progress dialog.

3 Modify res/layout/activity_main.xml file to add respective XML code.

4 Modify res/values/string.xml file to add a message as a string

constant.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.progressdialog/MainActivity.java.

package com.example.progressdialog;

import com.example.progressdialog.R;

Android

590

import android.os.Bundle;

import android.app.Activity;

import android.app.ProgressDialog;

import android.view.Menu;

import android.view.View;

public class MainActivity extends Activity {

 private ProgressDialog progress;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 progress = new ProgressDialog(this);

 }

 public void open(View view){

 progress.setMessage("Downloading Music :) ");

 progress.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);

 progress.setIndeterminate(true);

 progress.show();

 final int totalProgressTime = 100;

 final Thread t = new Thread(){

 @Override

 public void run(){

 int jumpTime = 0;

 while(jumpTime < totalProgressTime){

 try {

Android

591

 sleep(200);

 jumpTime += 5;

 progress.setProgress(jumpTime);

 } catch (InterruptedException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 };

 t.start();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Modify the content of res/layout/activity_main.xml to the following:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

Android

592

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="150dp"

 android:onClick="open"

 android:text="@string/download_button" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="19dp"

 android:text="@string/download_text"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Modify the res/values/string.xml to the following:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">ProgressDialog</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="download_button">Download</string>

 <string name="download_text">Press the button to download

music</string>

</resources>

Android

593

This is the default AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.progressdialog"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.progressdialog.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

594

Let's try to run your ProgressDialog application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

595

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

596

Just press the button to start the Progress bar. After pressing, following screen

would appear:

Android

597

It will continuously update itself, and after few seconds, it would appear

something like this.

Android

598

A notification is a message you can display to the user outside of your

application's normal UI. You can create your own notifications in android very

easily.

Android provides NotificationManager class for this purpose. In order to use

this class, you need to instantiate an object of this class by requesting the

android system through getSystemService() method. Its syntax is given

below:

NotificationManager NM;

NM=(NotificationManager)getSystemService(Context.NOTIFICATION_SERVICE);

After that you will create Notification through Notification class and specify its

attributes such as icon, title and time etc. Its syntax is given below:

Notification notify=new

Notification(android.R.drawable.stat_notify_more,title,System.currentTime

Millis());

The next thing you need to do is to create a PendingIntent by passing context

and intent as a parameter. By giving a PendingIntent to another application, you

are granting it the right to perform the operation you have specified as if the

other application was yourself.

PendingIntent pending=PendingIntent.getActivity(getApplicationContext(),

0, new Intent(),0);

The last thing you need to do is to call setLatestEventInfo method of the

Notification class and pass the pending intent along with notification subject and

body details. Its syntax is given below. And then finally call the notify method of

the NotificationManager class.

notify.setLatestEventInfo(getApplicationContext(), subject,
body,pending);

NM.notify(0, notify);

Apart from the notify method, there are other methods available in the

NotificationManager class. They are listed below:

59. PUSH NOTIFICATION

Android

599

Sr.No Method & description

1 cancel(int id)

This method cancels a previously shown notification.

2 cancel(String tag, int id)

This method also cancels a previously shown notification.

3 cancelAll()

This method cancels all previously shown notifications.

4 notify(int id, Notification notification)

This method posts a notification to be shown in the status bar.

5 notify(String tag, int id, Notification notification)

This method also Post a notification to be shown in the status bar.

Example:

The below example demonstrates the use of NotificationManager class. It

creates a basic application that allows you to create a notification.

To experiment with this example, you need to run this on an actual device or in

an emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Status under a package com.example.status. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add Notification code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Modify res/values/string.xml file and add necessary string

Android

600

components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.status/MainActivity.java.

package com.example.status;

import android.app.Activity;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

public class MainActivity extends Activity {

 NotificationManager NM;

 EditText one,two,three;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 one = (EditText)findViewById(R.id.editText1);

 two = (EditText)findViewById(R.id.editText2);

 three = (EditText)findViewById(R.id.editText3);

 }

 @Override

Android

601

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 @SuppressWarnings("deprecation")

 public void notify(View vobj){

 String title = one.getText().toString();

 String subject = two.getText().toString();

 String body = three.getText().toString();

 NM=(NotificationManager)getSystemService(Context.NOTIFICATION_SERVIC

 E);

 Notification notify=new Notification(android.R.drawable.

 stat_notify_more,title,System.currentTimeMillis());

 PendingIntent pending=PendingIntent.getActivity(

 getApplicationContext(),0, new Intent(),0);

 notify.setLatestEventInfo(getApplicationContext(),subject,body,pendi

 ng);

 NM.notify(0, notify);

 }

}

Here is the content of activity_main.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

Android

602

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_centerHorizontal="true"

 android:layout_marginBottom="86dp"

 android:onClick="notify"

 android:text="@string/notification" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="53dp"

 android:ems="10" />

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText1"

 android:layout_below="@+id/editText1"

 android:layout_marginTop="28dp"

 android:ems="10" />

 <EditText

 android:id="@+id/editText3"

Android

603

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText2"

 android:layout_below="@+id/editText2"

 android:layout_marginTop="23dp"

 android:ems="10" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editText1"

 android:layout_marginRight="14dp"

 android:layout_toLeftOf="@+id/editText1"

 android:text="@string/title" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/editText3"

 android:layout_alignRight="@+id/textView1"

 android:text="@string/heading" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editText3"

 android:layout_alignLeft="@+id/textView2"

 android:text="@string/body" />

 <TextView

 android:id="@+id/textView4"

Android

604

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_toRightOf="@+id/textView2"

 android:text="@string/create"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Status</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="notification">Notify</string>

 <string name="title">Title</string>

 <string name="heading">Subject</string>

 <string name="body">Body</string>

 <string name="create">Create Notification</string>

</resources>

Here is the content of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.status"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

Android

605

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.status.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

606

Let's try to run your TextToSpeech application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

607

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

608

Now fill in the field with the title, subject and the body. This has been shown

below in the figure:

Android

609

Now click on the notify button and you will see a notification in the top

notification bar. It has been shown below:

Android

610

Now scroll down the notification bar and see the notification. This has been

shown below in the figure:

Android

611

This chapter teaches you about Android RenderScript. Usually the apps on

android are designed as to consume as minimum resources as possible. But

some applications like some 3D games need high level processing on android.

To provide these applications high performance android introduced the

RenderScript. It is android based framework which is used for running

applications that perform very highly computational tasks. The development on

this framework is done in Native Development Kit (NDK) provided by android.

RenderScript is extremely useful for applications which performs following types

of actions:

 3D Rendering

 Image Processing

 Computational Photography

 Computer Vision

How RenderScript Works:

RenderScript framework is basically based on data parallel computation. It

distributes your application workload on all the processors available on your

device like multi-core CPUs or GPUs.

This parallel distribution of workload frees the programmer from the tension of

load balancing and work scheduling. You can write more detailed and complex

algorithms for your app without the worry of computational power.

How to Begin:

To use the RenderScript Framework you must have following two things:

 A RenderScript Kernel

 RenderScript APIs

A RenderScript Kernel

A kernel is a program which manages data processing instructions and manage

workload on Central Processing Units. A kernel is a fundamental part of the

operating system.

Similarly to run the RenderScript framework we need a written script named as

Kernel to manage all the data processing requests from our app and utilize more

features of the android OS provided by the NDK and as mentioned earlier that

60. RENDERSCRIPT

Android

612

the development of RenderScript is done in the Native Development Kit of

Android.

The Kernel Script is written in C-99 standard of C-language. This Standard was

before the development of C++. A RenderScript kernel script file usually placed

in .rs file. Each file is called as a script. A RenderScript Kernel script can contain

following elements:

Sr.No Elements

1 A Language declaration

It declares the version of RenderScript Kernel language used in this

script.

2 A package declaration

This declaration names the package name of the Java class which will

be affected by this Kernel Code.

3 Invokable functions

You can call these invokable functions from your JAVA code with

arbitrary arguments.

4 Script Globals Variables

These are just like the variables defined in C and C++ programming

language. You can access these variables from your JAVA code.

Following is the Sample Code of a Kernel:

uchar4 __convert__((kernel)) invert(uchar4 in, uint32_t x, uint32_t y) {

 uchar4 out = in;

 out.r = 255 - in.r;

 out.g = 255 - in.g;

 return out;

}

RenderScript APIs

If you want to use RenderScript in your API, you can do it in following two ways:

Android

613

Sr.No APIs

1 android.renderscript

This API is available on devices running Android 3.0 and higher.

2 android.support.v8.renderscript

This API is available on devices running Android 2.2 and higher.

To android support library following tools are required:

 Android SDK Tools version 22.2

 Android SDK Build-tools version 18.1.0

How to use RenderScript Support Library

First Open the project.properties file in your project and add following lines in

the file:

renderscript.target=18

renderscript.support.mode=true

sdk.buildtools=18.1.0

Now open your main class which use RenderScript and add an import for the

Support Library classes as following:

import android.support.v8.renderscript.*;

Following are the purposes of above mentioned properties that we add in the

project.properties file.

Sr.No Project properties

1 renderscript.target

It specifies the bytecode version to be generated.

2 renderscript.support.mode

It specifies a compatible version for the generated bytecode to fall

back.

Android

614

3 sdk.buildtools

It specifies the versions of Android SDK build tools to use.

Now call your RenderScript Kernel functions and compute complex algorithms in

your app.

Android

615

RSS stands for Really Simple Syndication. RSS is an easy way to share your

website updates and content with your users so that users might not have to

visit your site daily for any kind of updates.

RSS Example

RSS is a document that is created by the website with .xml extension. You can

easily parse this document and show it to the user in your application. An RSS

document looks like this.

<rss version="2.0">

<channel>

 <title>Sample RSS</title>

 <link>http://www.google.com</link>

 <description>World's best search engine</description>

</channel>

</rss>

RSS Elements

An RSS document such as above has the following elements.

Sr.No Component & description

1 channel

This element is used to describe the RSS feed.

2 title

Defines the title of the channel.

3 link

Defines the hyperlink to the channel.

4 description

61. RSS READER

Android

616

Describes the channel.

Parsing RSS

Parsing an RSS document is more like parsing XML. So now lets see how to

parse an XML document.

For this, we will create XMLPullParser object, but in order to create that we will

first create XmlPullParserFactory object and then call its newPullParser() method

to create XMLPullParser. Its syntax is given below:

private XmlPullParserFactory xmlFactoryObject =

XmlPullParserFactory.newInstance();

private XmlPullParser myparser = xmlFactoryObject.newPullParser();

The next step involves specifying the file for XmlPullParser that contains XML. It

could be a file or could be a Stream. In our case it is a stream. Its syntax is

given below:

myparser.setInput(stream, null);

The last step is to parse the XML. An XML file consist of events, Name, Text,

AttributesValue etc. So XMLPullParser has a separate function for parsing each of

the component of XML file. Its syntax is given below:

int event = myParser.getEventType();

while (event != XmlPullParser.END_DOCUMENT)

{

 String name=myParser.getName();

 switch (event){

 case XmlPullParser.START_TAG:

 break;

 case XmlPullParser.END_TAG:

 if(name.equals("temperature")){

 temperature = myParser.getAttributeValue(null,"value");

 }

 break;

 }

 event = myParser.next();

}

Android

617

The method getEventType returns the type of event that happens. e.g.:

Document start, tag start etc. The method getName returns the name of the

tag. Since we are only interested in temperature, we just check in conditional

statement to get a temperature tag, we call the method getAttributeValue to

return us the value of temperature tag.

Apart from these methods, there are other methods provided by this class for

better parsing XML files. These methods are listed below:

Sr.No Method & description

1 getAttributeCount()

This method just Returns the number of attributes of the current start

tag.

2 getAttributeName(int index)

This method returns the name of the attribute specified by the index

value.

3 getColumnNumber()

This method returns the current column number, starting from 0.

4 getDepth()

This method returns the current depth of the element.

5 getLineNumber()

Returns the current line number, starting from 1.

6 getNamespace()

This method returns the namespace URI of the current element.

7 getPrefix()

This method returns the prefix of the current element.

8 getName()

This method returns the name of the tag.

9 getText()

Android

618

This method returns the text for that particular element.

10 isWhitespace()

This method checks whether the current TEXT event contains only

whitespace characters.

Example:

Here is an example demonstrating the use of XMLPullParser class. It creates a

basic Parsing application that allows you to parse an RSS document present here

at http://tutorialspoint.com/android/sampleXML.xml and then shows the result.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as RSSReader under a package com.example.rssreader. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Create a new java file under src/HandleXML.java to fetch and parse

XML data.

6 Modify AndroidManifest.xml to add necessary internet permission.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Android

619

Following is the content of the modified main activity file

src/com.example.rssreader/MainActivity.java.

package com.example.rssreader;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

public class MainActivity extends Activity {

 private String

 finalUrl="http://tutorialspoint.com/android/sampleXML.xml";

 private HandleXML obj;

 private EditText title,link,description;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 title = (EditText)findViewById(R.id.editText1);

 link = (EditText)findViewById(R.id.editText2);

 description = (EditText)findViewById(R.id.editText3);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

Android

620

 public void fetch(View view){

 obj = new HandleXML(finalUrl);

 obj.fetchXML();

 while(obj.parsingComplete);

 title.setText(obj.getTitle());

 link.setText(obj.getLink());

 description.setText(obj.getDescription());

 }

}

Following is the content of the java

file src/com.example.rssreader/HandleXML.java.

package com.example.rssreader;

import java.io.InputStream;

import java.net.HttpURLConnection;

import java.net.URL;

import org.xmlpull.v1.XmlPullParser;

import org.xmlpull.v1.XmlPullParserFactory;

import android.util.Log;

public class HandleXML {

 private String title = "title";

 private String link = "link";

 private String description = "description";

 private String urlString = null;

 private XmlPullParserFactory xmlFactoryObject;

 public volatile boolean parsingComplete = true;

 public HandleXML(String url){

 this.urlString = url;

Android

621

 }

 public String getTitle(){

 return title;

 }

 public String getLink(){

 return link;

 }

 public String getDescription(){

 return description;

 }

 public void parseXMLAndStoreIt(XmlPullParser myParser) {

 int event;

 String text=null;

 try {

 event = myParser.getEventType();

 while (event != XmlPullParser.END_DOCUMENT) {

 String name=myParser.getName();

 switch (event){

 case XmlPullParser.START_TAG:

 break;

 case XmlPullParser.TEXT:

 text = myParser.getText();

 break;

 case XmlPullParser.END_TAG:

 if(name.equals("title")){

 title = text;

 }

 else if(name.equals("link")){

 link = text;

 }

 else if(name.equals("description")){

 description = text;

 }

 else{

Android

622

 }

 break;

 }

 event = myParser.next();

 }

 parsingComplete = false;

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void fetchXML(){

 Thread thread = new Thread(new Runnable(){

 @Override

 public void run() {

 try {

 URL url = new URL(urlString);

 HttpURLConnection conn = (HttpURLConnection)

 url.openConnection();

 conn.setReadTimeout(10000 /* milliseconds */);

 conn.setConnectTimeout(15000 /* milliseconds */);

 conn.setRequestMethod("GET");

 conn.setDoInput(true);

 // Starts the query

 conn.connect();

 InputStream stream = conn.getInputStream();

 xmlFactoryObject = XmlPullParserFactory.newInstance();

 XmlPullParser myparser = xmlFactoryObject.newPullParser();

 myparser.setFeature(XmlPullParser.FEATURE_PROCESS_NAMESPACES,

 false);

 myparser.setInput(stream, null);

 parseXMLAndStoreIt(myparser);

 stream.close();

 } catch (Exception e) {

 }

Android

623

 }

 });

 thread.start();

 }

}

Modify the content of res/layout/activity_main.xml to the following:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="26dp"

 android:text="@string/hello_world"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/textView1"

 android:layout_marginTop="48dp"

Android

624

 android:layout_toLeftOf="@+id/textView1"

 android:text="@string/title" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView2"

 android:layout_below="@+id/textView2"

 android:layout_marginTop="27dp"

 android:text="@string/link" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView2"

 android:layout_alignBottom="@+id/textView2"

 android:layout_alignParentRight="true"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView3"

 android:layout_alignBottom="@+id/textView3"

 android:layout_alignLeft="@+id/editText1"

 android:ems="10" >

 </EditText>

 <EditText

 android:id="@+id/editText3"

Android

625

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView4"

 android:layout_alignBottom="@+id/textView4"

 android:layout_alignLeft="@+id/editText2"

 android:ems="10" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/editText3"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="37dp"

 android:onClick="fetch"

 android:text="@string/fetch" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_centerVertical="true"

 android:text="@string/description" />

</RelativeLayout>

Modify the res/values/string.xml to the following:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">RSSReader</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Sample RSS Reader</string>

 <string name="title">title</string>

 <string name="link">link</string>

Android

626

 <string name="description">Description</string>

 <string name="fetch">Fetch Feed</string>

</resources>

This is the default AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.rssreader"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.rssreader.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

627

Let's try to run your RSSReader application. We assume, you had created

your AVD while doing environment setup. To run the app from Eclipse, open one

of your project's activity files and click Run icon from the toolbar. Eclipse

installs the app on your AVD and starts it and if everything is fine with your

setup and application, it will display following Emulator window:

Android

628

Just press the Fetch Feed button to fetch RSS feed. After pressing, following

screen would appear which would show the RSS data.

Android

629

Android Screen cast is a desktop application to control an android device

remotely. If your phone is not rooted, you can only view your mobile activity in

PC.

But if your phone is rooted, you can communicate both ways. You can also

control your device remotely using keyboard and mouse if your phone is rooted.

Screen Cast Steps

The steps of using screen cast has been mentioned below:

Steps Description

1 You should have latest android SDK installed on your PC.

2 Turn on USB debugging feature on your phone.

3 Connect your pc with phone via data cable.

4 Make sure you have Java Run Time 5 or later installed.

5 Download and open the androidscreencast application.

Step 1

You can download the latest android SDK

from http://developer.android.com/sdk/index.html .

Step 2
Turn on USB debugging feature on your device. It is usually found under settings

and developer options.

Step 3

Just connect your PC with your phone via the USB data cable.

Step 4
Install Java run time 5 or later, if you have not installed already. You can install

it from http://www.oracle.com/technetwork/java/javase/downloads/index.html .

62. SCREEN CAST

Android

630

Step 5

Finally install the androidScreenCast application. You can download it

from https://code.google.com/p/androidscreencast/ . Once you download it,

click to open. It is shown below:

Just wait for a few seconds for the application to load and following pop-up will

appear asking your permission to launch this application. Click on accept check

box and click on run. It is shown below:

Android

631

If everything work fine, you will now see your phone on your pc. Navigate

through your phone and you will see your mobile working on your pc. It is

shown below:

Android

632

You can see the message application in the above picture, that's because we

have opened the messaging application in our mobile. Now type something from

your mobile.

As you can see, we have written some text in the sms from our mobile and it

appears on PC. So this way you can use this ScreenCast application.

Android

633

To download and install latest android APIs and development tools from the

internet, android provide us with android SDK manager. Android SDK Manager

separates the APIs, tools and different platforms into different packages which

you can download.

Android SDK manager comes with the Android SDK bundle. You can't download

it separately. You can download the android sdk from

http://developer.android.com/sdk/index.html .

Running Android SDK Manager:

Once downloaded, you can launch Android SDK Manager in one of the following

ways:

 Click Window->Android SDK Manager option in Eclipse.

 Double Click on the SDK Manager.exe file in the Android SDK folder.

When it runs you will see the following screen:

You can select which package you want to download by selecting the checkboxes

and then click Install to install those packages. By default SDK Manager keeps it

up to date with latest APIs and other packages.

Once you download the SDK, following packages are available, but first three are

necessary to run your SDK and others are recommended.

63. SDK MANAGER

Android

634

Recommended Packages

Sr.No Package

1 SDK Tools

This is necessary package to run your SDK.

2 SDK Platform-tools

This package will be installed once when you first run the SDK

manager.

3 SDK Platform

Atleast one platform must be installed in your environment to run your

application.

4 System Image

It's a good practice to download system images for all of the android

versions so you can test your app on them with the Android Emulator.

5 SDK Samples

This will give you some sample codes to learn about android.

Enabling Proxy in Android SDK Manager

When you run the Android SDK Manager, by default it will check from the

Android Repository and Third Party Add-ons and display the available packages

to you.

If you want to use proxy, you can do it by clicking on the Tools-->Options in

the menu. Once you click it, you will see the following screen:

Android

635

Just Enter the proxy and run your SDK Manager.

Adding New Third Party Sites

If you want to download some Third Party made Android add-ons, you can do it

in the SDK manager by following steps:

 Click on the Tools option in the menu.

 Click on the Manage Add-On Sites option in the sub menu.

 Select the User Defined Sites tab.

 Click the New button.

Android

636

Following screen will be displayed:

Just add the URL of Add-on.xml file and click Ok. Now you can download the

Third Party Add-on in your development environment and use it.

Android

637

Most of the android devices have built-in sensors that measure motion,

orientation, and various environmental condition. The android platform supports

three broad categories of sensors.

 Motion Sensors

 Environmental sensors

 Position sensors

Some of the sensors are hardware based and some are software based sensors.

Whatever the sensor is, android allows us to get the raw data from these

sensors and use it in our application. For this, android provides us with some

classes.

Android provides SensorManager and Sensor classes to use the sensors in our

application. In order to use sensors, first thing you need to do is to instantiate

the object of SensorManager class. It can be achieved as follows.

SensorManager sMgr;

sMgr = (SensorManager)this.getSystemService(SENSOR_SERVICE);

The next thing you need to do is to instantiate the object of Sensor class by

calling the getDefaultSensor() method of the SensorManager class. Its syntax is

given below:

Sensor light;

light = sMgr.getDefaultSensor(Sensor.TYPE_LIGHT);

Once that sensor is declared, you need to register its listener and override two

methods which are onAccuracyChanged and onSensorChanged. Its syntax is as

follows:

sMgr.registerListener(this, light,SensorManager.SENSOR_DELAY_NORMAL);

public void onAccuracyChanged(Sensor sensor, int accuracy) {

}

public void onSensorChanged(SensorEvent event) {

}

64. SENSORS

Android

638

Getting list of sensors supported.

You can get a list of sensors supported by your device by calling the

getSensorList method, which will return a list of sensors containing their name

and version number and much more information. You can then iterate the list to

get the information. Its syntax is given below:

sMgr = (SensorManager)this.getSystemService(SENSOR_SERVICE);

List<Sensor> list = sMgr.getSensorList(Sensor.TYPE_ALL);

for(Sensor sensor: list){

}

Apart from these methods, there are other methods provided by the

SensorManager class for managing sensors framework. These methods are listed

below:

Sr.No Method & description

1 getDefaultSensor(int type)

This method gets the default sensor for a given type.

2 getOrientation(float[] R, float[] values)

This method returns a description of the current primary clip on the

clipboard but not a copy of its data.

3 getInclination(float[] I)

This method computes the geomagnetic inclination angle in radians

from the inclination matrix.

4 registerListener(SensorListener listener, int sensors, int rate)

This method registers a listener for the sensor

5 unregisterListener(SensorEventListener listener, Sensor

sensor)

This method unregisters a listener for the sensors with which it is

registered.

6 getOrientation(float[] R, float[] values)

This method computes the device's orientation based on the rotation

Android

639

matrix.

7 getAltitude(float p0, float p)

This method computes the Altitude in meters from the atmospheric

pressure and the pressure at sea level.

Example:

Here is an example demonstrating the use of SensorManager class. It creates a

basic application that allows you to view the list of sensors on your device.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Sensors under a package com.example.sensors. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.sensors/MainActivity.java.

package com.example.sensors;

import java.util.List;

import android.app.Activity;

Android

640

import android.hardware.Sensor;

import android.hardware.SensorManager;

import android.os.Bundle;

import android.view.Menu;

import android.widget.TextView;

public class MainActivity extends Activity {

 private SensorManager sMgr;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 TextView sensorsData = (TextView)findViewById(R.id.textView1);

 sMgr = (SensorManager)this.getSystemService(SENSOR_SERVICE);

 List list = sMgr.getSensorList(Sensor.TYPE_ALL);

 StringBuilder data = new StringBuilder();

 for(Sensor sensor: list){

 data.append(sensor.getName() + "\n");

 data.append(sensor.getVendor() + "\n");

 data.append(sensor.getVersion() + "\n");

 }

 sensorsData.setText(data);

}

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

Android

641

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ScrollView

 android:id="@+id/scrollView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="16dp"

 android:layout_marginTop="16dp" >

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

642

 android:text="Medium Text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </LinearLayout>

 </ScrollView>

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Sensors</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="list">List of sensors supported</string>

 </resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.sensors"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

Android

643

 <activity

 android:name="com.example.sensors.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run our Sensor application we just modified. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Android

644

Now if you will look at your device screen, you will see the list of sensors

supported by your device along with their name and version and other

information.

If you would run this application on different devices, the output would be

different because the output depends upon the number of sensors supported by

your device.

Android

645

Session help you when want to store user data outside your application, so that

when the next time user use your application, you can easily get back his details

and perform accordingly.

This can be done in many ways. But the most easiest and nicest way of doing

this is through Shared Preferences.

Shared Preferences

Shared Preferences allows you to save and retrieve data in the form of key value

pair. In order to use shared preferences, you have to call a method

getSharedPreferences() that returns a SharedPreference instance pointing to the

file that contains the values of preferences.

SharedPreferences sharedpreferences = getSharedPreferences(MyPREFERENCES,

Context.MODE_PRIVATE);

You can save something in the shared preferences by using

SharedPreferences.Editor class. You will call the edit method of

SharedPreference instance and will receive it in an editor object. Its syntax is:

Editor editor = sharedpreferences.edit();

editor.putString("key", "value");

editor.commit();

Apart from the putString method, there are methods availaible in the editor

class that allows manipulation of data inside shared preferences. They are listed

as follows:

Sr.

No.

Mode and description

1 apply()

It is an abstract method. It will commit your changes back from

editor to the sharedPreference object you are calling.

2 clear()

It will remove all values from the editor.

65. SESSION MANAGEMENT

Android

646

3 remove(String key)

It will remove the value whose key has been passed as a parameter.

4 putLong(String key, long value)

It will save a long value in a preference editor.

5 putInt(String key, int value)

It will save an integer value in a preference editor.

6 putFloat(String key, float value)

It will save a float value in a preference editor.

Session Management through Shared Preferences

To perform session management from shared preferences, we need to check the

values or data stored in shared preferences in the onResume method. If we do

not have the data, we will start the application from the beginning as it is newly

installed. But if we have the data, we will start from where the user left it. It is

demonstrated in the example below:

Example

The below example demonstrates the use of Session Management. It creates a

basic application that allows you to login for the first time. And then when you

exit the application without logging out, you will be brought back to the same

place if you start the application again. But if you logout from the application,

you will be brought back to the main login screen.

To experiment with this example, you need to run this on an actual device or in

an emulator .

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as SessionManagement under a package

com.example.sessionmanagement. While creating this project, make

sure you Target SDK and Compile With at the latest version of Android

SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add progress code to add session

code.

Android

647

3 Create New Activity and it name as Welcome.java.Edit this file to add

progress code to add session code.

4 Modify res/layout/activity_main.xml file to add respective XML code.

5 Modify res/layout/activity_welcome.xml file to add respective XML

code.

6 Modify res/values/string.xml file to add a message as a string

constant.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content

of src/com.example.sessionmanagement/MainActivity.java.

package com.example.sessionmanagement;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

public class MainActivity extends Activity {

 private EditText username,password;

 public static final String MyPREFERENCES = "MyPrefs" ;

 public static final String name = "nameKey";

 public static final String pass = "passwordKey";

 SharedPreferences sharedpreferences;

Android

648

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 username = (EditText)findViewById(R.id.editText1);

 password = (EditText)findViewById(R.id.editText2);

 }

 @Override

 protected void onResume() {

 sharedpreferences=getSharedPreferences(MyPREFERENCES,

 Context.MODE_PRIVATE);

 if (sharedpreferences.contains(name))

 {

 if(sharedpreferences.contains(pass)){

 Intent i = new Intent(this,com.example.sessionmanagement.

 Welcome.class);

 startActivity(i);

 }

 }

 super.onResume();

 }

 public void login(View view){

 Editor editor = sharedpreferences.edit();

 String u = username.getText().toString();

 String p = password.getText().toString();

 editor.putString(name, u);

 editor.putString(pass, p);

 editor.commit();

 Intent i = new Intent(this,com.example.

 sessionmanagement.Welcome.class);

 startActivity(i);

 }

 @Override

Android

649

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the content

of src/com.example.sessionmanagement/Welcome.java.

package com.example.sessionmanagement;

import android.app.Activity;

import android.content.Context;

import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

public class Welcome extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_welcome);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.welcome, menu);

Android

650

 return true;

 }

 public void logout(View view){

 SharedPreferences sharedpreferences = getSharedPreferences

 (MainActivity.MyPREFERENCES, Context.MODE_PRIVATE);

 Editor editor = sharedpreferences.edit();

 editor.clear();

 editor.commit();

 moveTaskToBack(true);

 Welcome.this.finish();

 }

 public void exit(View view){

 moveTaskToBack(true);

 Welcome.this.finish();

 }

}

Here is the content of activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/editText1"

Android

651

 android:layout_below="@+id/textView2"

 android:ems="10"

 android:inputType="textPassword" >

 </EditText>

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_marginTop="52dp"

 android:text="@string/Username"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignTop="@+id/textView1"

 android:layout_marginRight="16dp"

 android:layout_marginTop="27dp"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/textView1"

 android:layout_below="@+id/editText1"

 android:text="@string/Password"

 android:textAppearance="?android:attr/textAppearanceMedium" />

Android

652

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/editText1"

 android:layout_centerHorizontal="true"

 android:layout_marginBottom="22dp"

 android:text="@string/Signin"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/editText2"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="45dp"

 android:onClick="login"

 android:text="@string/Login" />

</RelativeLayout>

Here is the content of activity_welcome.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".Welcome" >

Android

653

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="146dp"

 android:onClick="logout"

 android:text="@string/logout" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/button1"

 android:layout_alignParentTop="true"

 android:layout_marginTop="64dp"

 android:text="@string/title_activity_welcome"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/button1"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="43dp"

 android:onClick="exit"

 android:text="@string/exit" />

</RelativeLayout>

Android

654

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">SessionManagement</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="Username">Username</string>

 <string name="Password">Password</string>

 <string name="Signin">Sign In</string>

 <string name="Login">Login</string>

 <string name="logout">Logout</string>

 <string name="title_activity_welcome">Welcome</string>

 <string name="exit">Exit without logout</string>

</resources>

Here is the content of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.sessionmanagement"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

Android

655

 <activity

 android:name="com.example.sessionmanagement.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="com.example.sessionmanagement.Welcome"

 android:label="@string/title_activity_welcome" >

 </activity>

 </application>

</manifest>

Let's try to run your Session Management application. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Android

656

Android

657

Type in your username and password (type anything you like, but remember

what you type), and click on login button. It is shown in the image below:

Android

658

As soon as you click on login button, you will be brought to this Welcome screen.

Now your login information is stored in shared preferences.

Android

659

Now click on Exit without logout button and you will be brought back to the

home screen. This is shown in the image below:

Android

660

Now Start the application again. And this time you will not be brought to the

login screen, but directly to the welcome screen.This is shown in the image

below:

Android

661

Now click on logout button, and the application will be closed. Now open the

application again, and since you have logout your session, so you will be brought

back to the front login screen. This is shown in the image below:

Android

662

SIP stands for (Session Initiation Protocol). It is a protocol that let applications

easily set up outgoing and incoming voice calls, without having to manage

sessions, transport-level communication, or audio record or playback directly.

Applications

Some of the common applications of SIP are.

 Video conferencing

 Instant messaging

Requirements

Here are the requirements for developing a SIP application:

 Android OS must be 2.3 or higher

 You must have a data connection or WIFI

 You must have an SIP account in order to use this service.

SIP Classes

Here is a summary of the classes that are included in the Android SIP API:

Sr.

NO

Class and description

1 SipAudioCall

Handles an Internet audio call over SIP.

2 SipErrorCode

Defines error codes returned during SIP actions.

3 SipManager

Provides APIs for SIP tasks, such as initiating SIP connections, and

provides access to related SIP services.

66. SIP PROTOCOL

Android

663

4 SipProfile

Defines a SIP profile, including a SIP account, domain and server.

information

5 SipSession

Represents a SIP session that is associated with a SIP dialog or a

standalone transaction not within a dialog.

Functions of SIP

SIP has following major functions.

 SIP allows for the establishment of user location

 SIP provides a mechanism for call management

 SIP provides feature negotiation, so that all the parties in the call can

agree to the features supported among them

Components of SIP

SIP has two major components which are listed below.

 User Agent Client (UAC)

 User Agent Server (UAS)

UAC

UAC or User Agent Client are those end users who generates requests and send

those requests to the server.These requests are generated by the client

applications running on their systems.

UAS

UAS or User Agent Server are those systems which get the request generated by

UAC. The UAS process those requests and then according to the requests it

generates responses accordingly.

SipManager

SipManager is an android API for SIP tasks, such as initiating SIP connections,

and provides access to related SIP services. This class is the starting point for

any SIP actions. You can acquire an instance of it with newInstance().

Android

664

The SipManager has many functions for managing SIP tasks. Some of the

functions are listed below.

Sr.

NO

Class and description

1 close(String localProfileUri)

Closes the specified profile to not make/receive calls.

2 getCallId(Intent incomingCallIntent)

Gets the call ID from the specified incoming call broadcast intent.

3 isOpened(String localProfileUri)

Checks if the specified profile is opened in the SIP service for making

and/or receiving calls.

4 isSipWifiOnly(Context context)

Returns true if SIP is only available on WIFI.

5 isRegistered(String localProfileUri)

Checks if the SIP service has successfully registered the profile to the

SIP provider (specified in the profile) for receiving calls.

6 isVoipSupported(Context context)

Returns true if the system supports SIP-based VOIP API.

7 takeAudioCall(Intent incomingCallIntent, SipAudioCall.Listener

listener)

Creates a SipAudioCall to take an incoming call.

8 unregister(SipProfile localProfile, SipRegistrationListener

listener)

Manually unregisters the profile from the corresponding SIP provider to

stop receiving further calls.

Android

665

The Android platform offers a spelling checker framework that lets you

implement and access spell checking in your application.

To use spelling checker, you need to implement SpellCheckerSessionListener

interface and override its methods. Its syntax is given below:

public class HelloSpellCheckerActivity extends Activity implements
SpellCheckerSessionListener {

@Override

public void onGetSuggestions(final SuggestionsInfo[] arg0) {

 // TODO Auto-generated method stub

}

@Override

public void onGetSentenceSuggestions(SentenceSuggestionsInfo[] arg0) {

 // TODO Auto-generated method stub

}

}

Next thing you need to do is to create an object of SpellCheckerSession class.

This object can be instantiated by calling newSpellCheckerSession method of

TextServicesManager class. This class handles interaction between application

and text services. You need to request system service to instantiate it. Its

syntax is given below:

private SpellCheckerSession mScs;

final TextServicesManager tsm = (TextServicesManager) getSystemService(

Context.TEXT_SERVICES_MANAGER_SERVICE);

mScs = tsm.newSpellCheckerSession(null, null, this, true);

The last thing you need to do is to call getSuggestions method to get

suggestion for any text, you want. The suggestions will be passed onto

the onGetSuggestions method from where you can do whatever you want.

mScs.getSuggestions(new TextInfo(editText1.getText().toString()), 3);

67. SPELLING CHECKER

Android

666

This method takes two parameters. First parameter is the string in the form of

TextInfo object, and second parameter is the cookie number used to distinguish

suggestions.

Apart from the methods, there are other methods provided by the

SpellCheckerSession class for better handling suggestions. These methods are

listed below:

Sr.No Method & description

1 cancel()

Cancels pending and running spell check tasks.

2 close()

Finish this session and allow TextServicesManagerService to

disconnect the bound spell checker.

3 getSentenceSuggestions(TextInfo[] textInfos, int

suggestionsLimit)

Get suggestions from the specified sentences.

4 getSpellChecker()

Get the spell checker service info, this spell checker session has.

5 isSessionDisconnected()

True if the connection to a text service of this session is disconnected

and not alive.

Example:

Here is an example demonstrating the use of Spell Checker. It creates a basic

spell checking application that allows you to write text and get suggestions.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as HelloSpellCheckerActivity under a package

com.example.hellospellchecker. While creating this project, make sure

Android

667

you Target SDK and Compile With at the latest version of Android SDK

to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/main to add respective XML components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.hellospellchecker/MainActivity.java.

package com.example.android.hellospellchecker;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.view.View;

import android.view.textservice.SentenceSuggestionsInfo;

import android.view.textservice.SpellCheckerSession;

import

android.view.textservice.SpellCheckerSession.SpellCheckerSessionListener;

import android.view.textservice.SuggestionsInfo;

import android.view.textservice.TextInfo;

import android.view.textservice.TextServicesManager;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

public class HelloSpellCheckerActivity extends Activity implements

SpellCheckerSessionListener {

 private static final int NOT_A_LENGTH = -1;

Android

668

 private TextView mMainView;

 private SpellCheckerSession mScs;

 private EditText editText1;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mMainView = (TextView)findViewById(R.id.main);

 editText1 = (EditText)findViewById(R.id.editText1);

 }

 @Override

 public void onResume() {

 super.onResume();

 final TextServicesManager tsm = (TextServicesManager)

 getSystemService(

 Context.TEXT_SERVICES_MANAGER_SERVICE);

 mScs = tsm.newSpellCheckerSession(null, null, this, true);

 }

 @Override

 public void onPause() {

 super.onPause();

 if (mScs != null) {

 mScs.close();

 }

 }

 public void go(View view){

 Toast.makeText(getApplicationContext(),

 editText1.getText().toString(),

 Toast.LENGTH_SHORT).show();

 mScs.getSuggestions(new TextInfo(editText1.getText().toString()),

Android

669

 3);

 }

 @Override

 public void onGetSuggestions(final SuggestionsInfo[] arg0) {

 final StringBuilder sb = new StringBuilder();

 for (int i = 0; i < arg0.length; ++i) {

 // Returned suggestions are contained in SuggestionsInfo

 final int len = arg0[i].getSuggestionsCount();

 sb.append('\n');

 for (int j = 0; j < len; ++j) {

 sb.append("," + arg0[i].getSuggestionAt(j));

 }

 sb.append(" (" + len + ")");

 }

 runOnUiThread(new Runnable() {

 public void run() {

 mMainView.append(sb.toString());

 }

 });

 }

 @Override

 public void onGetSentenceSuggestions(SentenceSuggestionsInfo[] arg0) {

 // TODO Auto-generated method stub

 }

}

Android

670

Following is the modified content of the xml res/layout/main.xml.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

 android:id="@+id/main"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/pre"

 />

 <Button

 android:id="@+id/mainbtn"

 android:layout_width="150dip"

 android:layout_height="50dip"

 android:onClick="go"

 android:text="@string/suggest" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:ems="10" >

 <requestFocus />

 </EditText>

</LinearLayout>

Android

671

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">HelloSpellChecker</string>

 <string name="suggest">suggest</string>

 <string name="pre">Suggestions</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.android.hellospellchecker"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />

 <application

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name=".HelloSpellCheckerActivity" >

 <intent-filter >

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

Android

672

</manifest>

Let's try to run our Spell Checker application we just modified. We assume, you

had created your AVD while doing environment setup. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Eclipse installs the app on your AVD and starts it and if everything is

fine with your setup and application, it will display following Emulator window:

Android

673

Now what you need to do is to enter any text in the field. For example, we have

entered some text. Press the suggestions button. The following notification

would appear in your AVD along with suggestions:

Android

674

Now change the text and press the button again, like we did. And this is what

comes on screen.

Android

675

SQLite is an open source SQL database that stores data to a text file on a

device. Android comes in with built in SQLite database implementation.

SQLite supports all the relational database features. To access this database,

you don't need to establish any kind of connections for it like JDBC, ODBC etc.

Database - Package

The main package is android.database.sqlite that contains the classes to manage

your own databases.

Database - Creation

In order to create a database you need to call the method

openOrCreateDatabase with your database name and mode as a parameter. It

returns an instance of SQLite database which you have to receive in your own

object. Its syntax is given below:

SQLiteDatabse mydatabase = openOrCreateDatabase("your database name",

MODE_PRIVATE, null);

Apart from this, there are other functions available in the database package that

does this job. They are listed below

Sr.No Method & Description

1 openDatabase(String path, SQLiteDatabase.CursorFactory

factory, int flags, DatabaseErrorHandler errorHandler)

This method only opens the existing database with the appropriate

flag mode. The common flags mode could be OPEN_READWRITE

OPEN_READONLY.

2 openDatabase(String path, SQLiteDatabase.CursorFactory

factory, int flags)

It is similar to the above method as it also opens the exisiting

database but it does not define any handler to handle the errors of

databases.

3 openOrCreateDatabase(String path,

68. SQLITE DATABASE

Android

676

SQLiteDatabase.CursorFactory factory)

It not only opens, but creates the database if it does not exists. This

method is equivalent to openDatabase method.

4 openOrCreateDatabase(File file, SQLiteDatabase.CursorFactory

factory)

This method is similar to above method but it takes the File object as

a path rather than a string. It is equavilent to file.getPath()

Database - Insertion

We can create table or insert data into table using execSQL method defined in

SQLiteDatabase class. Its syntax is given below:

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS TutorialsPoint(Username
VARCHAR,Password VARCHAR);");

mydatabase.execSQL("INSERT INTO TutorialsPoint

VALUES('admin','admin');");

This will insert some values into our table in our database. Another method that

also does the same job but take some additional parameter is given below

Sr.No Method & Description

1 execSQL(String sql, Object[] bindArgs)

This method not only insert data, but also used to update or modify

already existing data in database using bind arguments.

Database - Fetching

We can retrieve anything from database using an object of the Cursor class. We

will call a method of this class called rawQuery and it will return a resultset with

the cursor pointing to the table. We can move the cursor forward and retrieve

the data.

Cursor resultSet = mydatabase.rawQuery("Select * from

TutorialsPoint",null);

resultSet.moveToFirst();

String username = resultSet.getString(1);

String password = resultSet.getString(2);

Android

677

There are other functions available in the Cursor class that allows us to

effectively retrieve the data. That includes-

Sr.No Method & Description

1 getColumnCount()

This method returns the total number of columns of the table.

2 getColumnIndex(String columnName)

This method returns the index number of a column by specifying the

name of the column.

3 getColumnName(int columnIndex)

This method returns the name of the column by specifying the index of

the column.

4 getColumnNames()

This method returns the array of all the column names of the table.

5 getCount()

This method returns the total number of rows in the cursor.

6 getPosition()

This method returns the current position of the cursor in the table.

7 isClosed()

This method returns true if the cursor is closed and returns false

otherwise.

Database - Helper class

For managing all the operations related to the database, a helper class has been

given and is called SQLiteOpenHelper. It automatically manages the creation and

updation of the database. Its syntax is given below:

public class DBHelper extends SQLiteOpenHelper {

 public DBHelper(){

 super(context,DATABASE_NAME,null,1);

Android

678

 }

 public void onCreate(SQLiteDatabase db) {}

 public void onUpgrade(SQLiteDatabase database, int oldVersion, int

newVersion) {}

}

Example:

Here is an example demonstrating the use of SQLite Database. It creates a basic

contacts applications that allows insertion, deletion and modification of contacts.

To experiment with this example, you need to run this on an actual device on

which camera is supported.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as AddressBook under a package com.example.addressbook. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to get references of all the XML

components and populate the contacts on listView.

3 Create new src/DBHelper.java that will manage the database work.

4 Create a new Activity as DisplayContact.java that will display the

contact on the screen.

5 Modify the res/layout/activity_main to add respective XML

components.

6 Modify the res/layout/activity_display_contact.xml to add respective

XML components.

7 Modify the res/values/string.xml to add necessary string components.

8 Modify the res/menu/display_contact.xml to add necessary menu

components.

9 Create a new menu as res/menu/mainmenu.xml to add the insert

contact option.

Android

679

10 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.addressbook/MainActivity.java.

package com.example.addressbook;

import java.util.ArrayList;

import android.os.Bundle;

import android.app.Activity;

import android.content.Intent;

import android.view.KeyEvent;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ArrayAdapter;

import android.widget.ListView;

public class MainActivity extends Activity {

 public final static String EXTRA_MESSAGE =

 "com.example.AddressBook.MESSAGE";

 private ListView obj;

 DBHelper mydb;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 mydb = new DBHelper(this);

Android

680

 ArrayList array_list = mydb.getAllCotacts();

 ArrayAdapter arrayAdapter =

 new ArrayAdapter(this,android.R.layout.simple_list_item_1,

 array_list);

 //adding it to the list view.

 obj = (ListView)findViewById(R.id.listView1);

 obj.setAdapter(arrayAdapter);

 obj.setOnItemClickListener(new OnItemClickListener(){

 @Override

 public void onItemClick(AdapterView<?> arg0, View arg1, int arg2,

 long arg3) {

 // TODO Auto-generated method stub

 int id_To_Search = arg2 + 1;

 Bundle dataBundle = new Bundle();

 dataBundle.putInt("id", id_To_Search);

 Intent intent = new

 Intent(getApplicationContext(),com.example.addressbook.DisplayCo

 ntact.class);

 intent.putExtras(dataBundle);

 startActivity(intent);

 }

 });

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.mainmenu, menu);

 return true;

 }

Android

681

 @Override

 public boolean onOptionsItemSelected(MenuItem item)

 {

 super.onOptionsItemSelected(item);

 switch(item.getItemId())

 {

 case R.id.item1:

 Bundle dataBundle = new Bundle();

 dataBundle.putInt("id", 0);

 Intent intent = new

 Intent(getApplicationContext(),com.example.addressbook.Displa
 yContact.class);

 intent.putExtras(dataBundle);

 startActivity(intent);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

 public boolean onKeyDown(int keycode, KeyEvent event) {

 if (keycode == KeyEvent.KEYCODE_BACK) {

 moveTaskToBack(true);

 }

 return super.onKeyDown(keycode, event);

 }

}

Following is the modified content of display contact activity

src/com.example.addressbook/DisplayContact.java

package com.example.addressbook;

import android.os.Bundle;

Android

682

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.content.Intent;

import android.database.Cursor;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

public class DisplayContact extends Activity {

 int from_Where_I_Am_Coming = 0;

 private DBHelper mydb ;

 TextView name ;

 TextView phone;

 TextView email;

 TextView street;

 TextView place;

 int id_To_Update = 0;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_display_contact);

 name = (TextView) findViewById(R.id.editTextName);

 phone = (TextView) findViewById(R.id.editTextPhone);

 email = (TextView) findViewById(R.id.editTextStreet);

 street = (TextView) findViewById(R.id.editTextEmail);

 place = (TextView) findViewById(R.id.editTextCity);

Android

683

 mydb = new DBHelper(this);

 Bundle extras = getIntent().getExtras();

 if(extras !=null)

 {

 int Value = extras.getInt("id");

 if(Value>0){

 //means this is the view part not the add contact part.

 Cursor rs = mydb.getData(Value);

 id_To_Update = Value;

 rs.moveToFirst();

 String nam =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_NAME)

);

 String phon =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_PHONE

));

 String emai =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_EMAIL

));

 String stree =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_STREE

T));

 String plac =

rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_CITY)

);

 if (!rs.isClosed())

 {

 rs.close();

 }

 Button b = (Button)findViewById(R.id.button1);

 b.setVisibility(View.INVISIBLE);

 name.setText((CharSequence)nam);

 name.setFocusable(false);

 name.setClickable(false);

Android

684

 phone.setText((CharSequence)phon);

 phone.setFocusable(false);

 phone.setClickable(false);

 email.setText((CharSequence)emai);

 email.setFocusable(false);

 email.setClickable(false);

 street.setText((CharSequence)stree);

 street.setFocusable(false);

 street.setClickable(false);

 place.setText((CharSequence)plac);

 place.setFocusable(false);

 place.setClickable(false);

 }

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 Bundle extras = getIntent().getExtras();

 if(extras !=null)

 {

 int Value = extras.getInt("id");

 if(Value>0){

 getMenuInflater().inflate(R.menu.display_contact, menu);

 }

 else{

 getMenuInflater().inflate(R.menu.main, menu);

 }

 }

 return true;

Android

685

 }

 public boolean onOptionsItemSelected(MenuItem item)

 {

 super.onOptionsItemSelected(item);

 switch(item.getItemId())

 {

 case R.id.Edit_Contact:

 Button b = (Button)findViewById(R.id.button1);

 b.setVisibility(View.VISIBLE);

 name.setEnabled(true);

 name.setFocusableInTouchMode(true);

 name.setClickable(true);

 phone.setEnabled(true);

 phone.setFocusableInTouchMode(true);

 phone.setClickable(true);

 email.setEnabled(true);

 email.setFocusableInTouchMode(true);

 email.setClickable(true);

 street.setEnabled(true);

 street.setFocusableInTouchMode(true);

 street.setClickable(true);

 place.setEnabled(true);

 place.setFocusableInTouchMode(true);

 place.setClickable(true);

 return true;

 case R.id.Delete_Contact:

 AlertDialog.Builder builder = new AlertDialog.Builder(this);

Android

686

 builder.setMessage(R.string.deleteContact)

 .setPositiveButton(R.string.yes, new

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 mydb.deleteContact(id_To_Update);

 Toast.makeText(getApplicationContext(), "Deleted

Successfully", Toast.LENGTH_SHORT).show();

 Intent intent = new

Intent(getApplicationContext(),com.example.addressbook.MainAc

tivity.class);

 startActivity(intent);

 }

 })

 .setNegativeButton(R.string.no, new

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // User cancelled the dialog

 }

 });

 AlertDialog d = builder.create();

 d.setTitle("Are you sure");

 d.show();

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

 public void run(View view)

 {

 Bundle extras = getIntent().getExtras();

 if(extras !=null)

 {

Android

687

 int Value = extras.getInt("id");

 if(Value>0){

 if(mydb.updateContact(id_To_Update,name.getText().toString(),

phone.getText().toString(), email.getText().toString(),

street.getText().toString(), place.getText().toString())){

 Toast.makeText(getApplicationContext(), "Updated",

Toast.LENGTH_SHORT).show();

 Intent intent = new

Intent(getApplicationContext(),com.example.addressbook.Mai

nActivity.class);

 startActivity(intent);

 }

 else{

 Toast.makeText(getApplicationContext(), "not Updated",

Toast.LENGTH_SHORT).show();

 }

 }

 else{

 if(mydb.insertContact(name.getText().toString(),
phone.getText().toString(), email.getText().toString(),

street.getText().toString(), place.getText().toString())){

 Toast.makeText(getApplicationContext(), "done",

Toast.LENGTH_SHORT).show();

 }

 else{

 Toast.makeText(getApplicationContext(), "not done",

Toast.LENGTH_SHORT).show();

 }

 Intent intent = new

Intent(getApplicationContext(),com.example.addressbook.MainAc

tivity.class);

 startActivity(intent);

 }

 }

 }

}

Android

688

Following is the content of Database

class src/com.example.addressbook/DBHelper.java

package com.example.addressbook;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Hashtable;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.DatabaseUtils;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteDatabase;

public class DBHelper extends SQLiteOpenHelper {

 public static final String DATABASE_NAME = "MyDBName.db";

 public static final String CONTACTS_TABLE_NAME = "contacts";

 public static final String CONTACTS_COLUMN_ID = "id";

 public static final String CONTACTS_COLUMN_NAME = "name";

 public static final String CONTACTS_COLUMN_EMAIL = "email";

 public static final String CONTACTS_COLUMN_STREET = "street";

 public static final String CONTACTS_COLUMN_CITY = "place";

 public static final String CONTACTS_COLUMN_PHONE = "phone";

 private HashMap hp;

 public DBHelper(Context context)

 {

 super(context, DATABASE_NAME, null, 1);

 }

Android

689

 @Override

 public void onCreate(SQLiteDatabase db) {

 // TODO Auto-generated method stub

 db.execSQL(

 "create table contacts " +

 "(id integer primary key, name text,phone text,email text, street

text,place text)"

);

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int

newVersion) {

 // TODO Auto-generated method stub

 db.execSQL("DROP TABLE IF EXISTS contacts");

 onCreate(db);

 }

 public boolean insertContact (String name, String phone, String

 email, String street,String place)

 {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues contentValues = new ContentValues();

 contentValues.put("name", name);

 contentValues.put("phone", phone);

 contentValues.put("email", email);

 contentValues.put("street", street);

 contentValues.put("place", place);

 db.insert("contacts", null, contentValues);

 return true;

 }

 public Cursor getData(int id){

 SQLiteDatabase db = this.getReadableDatabase();

Android

690

 Cursor res = db.rawQuery("select * from contacts where

 id="+id+"", null);

 return res;

 }

 public int numberOfRows(){

 SQLiteDatabase db = this.getReadableDatabase();

 int numRows = (int) DatabaseUtils.queryNumEntries(db,

 CONTACTS_TABLE_NAME);

 return numRows;

 }

 public boolean updateContact (Integer id, String name, String phone,

 String email, String street,String place)

 {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues contentValues = new ContentValues();

 contentValues.put("name", name);

 contentValues.put("phone", phone);

 contentValues.put("email", email);

 contentValues.put("street", street);

 contentValues.put("place", place);

 db.update("contacts", contentValues, "id = ? ", new String[] {

 Integer.toString(id) });

 return true;

 }

 public Integer deleteContact (Integer id)

 {

 SQLiteDatabase db = this.getWritableDatabase();

 return db.delete("contacts",

 "id = ? ",

 new String[] { Integer.toString(id) });

 }

 public ArrayList getAllCotacts()

 {

Android

691

 ArrayList array_list = new ArrayList();

 //hp = new HashMap();

 SQLiteDatabase db = this.getReadableDatabase();

 Cursor res = db.rawQuery("select * from contacts", null);

 res.moveToFirst();

 while(res.isAfterLast() == false){

array_list.add(res.getString(res.getColumnIndex(CONTACTS_COLUMN_NAM

E)));

 res.moveToNext();

 }

 return array_list;

 }

}

Following is the content of the res/layout/activity_main.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ListView

 android:id="@+id/listView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true" >

 </ListView>

Android

692

</RelativeLayout>

Following is the content of the res/layout/activity_display_contact.xml

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/scrollView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 tools:context=".DisplayContact" >

<RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="370dp"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 >

 <EditText

 android:id="@+id/editTextName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_marginTop="5dp"

 android:layout_marginLeft="82dp"

 android:ems="10"

 android:inputType="text" >

 </EditText>

 <EditText

 android:id="@+id/editTextEmail"

Android

693

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextStreet"

 android:layout_below="@+id/editTextStreet"

 android:layout_marginTop="22dp"

 android:ems="10"

 android:inputType="textEmailAddress" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editTextName"

 android:layout_alignParentLeft="true"

 android:text="@string/name"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextCity"

 android:layout_alignParentBottom="true"

 android:layout_marginBottom="28dp"

 android:onClick="run"

 android:text="@string/save" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editTextEmail"

 android:layout_alignLeft="@+id/textView1"

 android:text="@string/email"

Android

694

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/editTextPhone"

 android:layout_alignLeft="@+id/textView1"

 android:text="@string/phone"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/editTextEmail"

 android:layout_alignLeft="@+id/textView5"

 android:text="@string/street"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editTextCity"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignRight="@+id/editTextName"

 android:layout_below="@+id/editTextEmail"

 android:layout_marginTop="30dp"

 android:ems="10"

 android:inputType="text" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Android

695

 android:layout_alignBaseline="@+id/editTextCity"

 android:layout_alignBottom="@+id/editTextCity"

 android:layout_alignParentLeft="true"

 android:layout_toLeftOf="@+id/editTextEmail"

 android:text="@string/country"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editTextStreet"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextName"

 android:layout_below="@+id/editTextPhone"

 android:ems="10"

 android:inputType="text" >

 <requestFocus />

 </EditText>

 <EditText

 android:id="@+id/editTextPhone"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editTextStreet"

 android:layout_below="@+id/editTextName"

 android:ems="10"

 android:inputType="phone|text" />

</RelativeLayout>

</ScrollView>

Following is the content of the res/value/string.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

Android

696

 <string name="app_name">Address Book</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="Add_New">Add New</string>

 <string name="edit">Edit Contact</string>

 <string name="delete">Delete Contact</string>

 <string name="title_activity_display_contact">DisplayContact</string>

 <string name="name">Name</string>

 <string name="phone">Phone</string>

 <string name="email">Email</string>

 <string name="street">Street</string>

 <string name="country">City/State/Zip</string>

 <string name="save">Save Contact</string>

 <string name="deleteContact">Are you sure, you want to delete

it.</string>

 <string name="yes">Yes</string>

 <string name="no">No</string>

</resources>

Following is the content of the res/menu/mainmenu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item android:id="@+id/item1"

 android:icon="@drawable/add"

 android:title="@string/Add_New"

 android:showAsAction="ifRoom|withText">

 </item>

</menu>

Following is the content of the res/menu/display_contact.xml

Android

697

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item

 android:id="@+id/Edit_Contact"

 android:orderInCategory="100"

 android:title="@string/edit"/>

 <item

 android:id="@+id/Delete_Contact"

 android:orderInCategory="100"

 android:title="@string/delete"/>

</menu>

This is the defualt AndroidManifest.xml of this project

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.addressbook"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.addressbook.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

Android

698

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="com.example.addressbook.DisplayContact"

 android:label="@string/title_activity_display_contact" >

 </activity>

 </application>

</manifest>

Let's try to run your Camera application. We assume, you have connected your

actual Android Mobile device with your computer. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Before starting your application, Eclipse will display following window to select

an option where you want to run your Android application.

Android

699

Select your mobile device as an option and then check your mobile device which

will display following screen:

Android

700

Click on the add button on the top right corner of the menu screen to add a new

contact. It will display the following screen:

Android

701

It will display the following fields. Please enter the required information and click

on save contact. It will bring you back to main screen.

Android

702

Android

703

Now our contact john has been added. Tap on this to edit or delete the contact.

It will bring you to the following screen. Now select menu from your mobile. And

there will be two options there.

Android

704

Select delete contact and a dialog box would appear asking you about deleting

this contact. It would be like this -

Android

705

Select Yes from the above screen that appears and a notification will appear that

the contact has been deleted successfully. It would appear like this -

In order to see where your database is created, open your eclipse, connect your

mobile, go to right corner and select DDMS. Now browse the file explorer tab.

Now browse this

folder /data/data/<your.package.name>/databases<database-name>.

Android

706

When you develop an app on a latest version of android like 4.0 and you also

want it to run on those devices which are running older versions of android like

3.2 etc. you can't do that until you add backward compatability to your code.

To provide this backward compatability android provides you the Android

Support Library package. The Android Support Library package is a set of code

libraries that provide backward-compatible versions of Android framework APIs

as well as features that are only available through the library APIs. Each Support

Library is backward-compatible to a specific Android API level.

Including the Support Libraries in your Android project is considered a best

practice for application developers, depending on the range of platform versions

your app is targeting and the APIs that it uses.

Support Library Features

The Android Support Library package contains several libraries that can be

included in your application. Each of these libraries supports a specific range of

Android platform versions and set of features.

In order to effectively use the libraries, it is important to consider the API level

that you want to target, as each library supports different API level.

Following is a brief description of android support libraries and API level they

support.

Sr.No Version & Features

1 v4 Support Library

This library is designed to be used with Android 1.6 (API level 4) and

higher.

2 v7 Support Library

There are several libraries designed to be used with Android 2.1 (API

level 7) and higher.

3 v8 Support Library

This library is designed to be used with Android (API level 8) and

higher.

69. SUPPORT LIBRARY

Android

707

4 v13 Support Library

This library is designed to be used for Android 3.2 (API level 13) and

higher.

Please remember that use of Android Support Library in your app code is

encouraged and preferred. By using these libraries you can increase your target

market and target audience.

Downloading the Support Libraries

Note: Before installing the support library packages you should be clear of the

feature you want to use in your app.

The Android Support Library package is available through the Android SDK

Manager.

To download the support library package through the SDK Manager, follow these

steps:

 Start the android SDK Manager.

 In the SDK Manager window, scroll to the end of the Packages list, find

the Extras folder.

 Select the Android Support Library item.

 Click the Install packages button.

Android

708

After downloading, the tool installs the Support Library files to your existing

Android SDK directory. The library files are located in the following sub-directory

of your SDK:/extras/android/support/ directory.

Choosing Support Libraries

Before adding a Support Library to your application, decide what features you

want to include and the lowest Android versions you want to support.

Changes in Android.Manifest

If you are increasing the backward compatibility of your existing application to

an earlier version of the Android API with the Support Library, make sure to

update your application's manifest. Specifically, you should update

the android:minSdkVersion element of the tag in the manifest to the new,

lower version number, as shown below:

<uses-sdk

 android:minSdkVersion="7"

 android:targetSdkVersion="17" />

This change tells Google Playstore app that your application can be installed on

devices with Android 2.1 (API level 7) and higher.

API Version

Note: If you are including the v4 support and v7 support libraries in your

application, you should specify a minimum SDK version of "7" (and not "4"). The

highest support library level you include in your application determines the

lowest API version in which it can operate.

Android

709

The Android framework includes an integrated testing framework that help you

test all aspects of your application. The SDK tools include tools for setting up

and running test applications. Whether you are working in Eclipse with ADT or

working from the command line, the SDK tools help you set up and run your

tests within an emulator or the device you are targeting.

Test Structure

Android's build and test tools assume that test projects are organized into a

standard structure of tests, test case classes, test packages, and test projects.

Testing Tools in Android

There are many tools that can be used for testing android applications. Some

are official like Junit, Monkey and some are third party tools that can be used to

70. TESTING

Android

710

test android applications. In this chapter we are going to explain these two tools

to test android applications.

 JUnit

 Monkey

JUnit

You can use the JUnit TestCase class to do unit testing on a class that doesn't

call Android APIs. TestCase is also the base class for AndroidTestCase, which you

can use to test Android-dependent objects. Besides providing the JUnit

framework, AndroidTestCase offers Android-specific setup, teardown, and helper

methods.

To use TestCase, extend your class with TestCase class and implement a method

call setUp(). Its syntax is given below:

public class MathTest extends TestCase {

protected double fValue1;

protected double fValue2;

protected void setUp() {

fValue1= 2.0;

fValue2= 3.0;

}

}

For each test, implement a method which interacts with the fixture. Verify the

expected results with assertions specified by calling assertTrue(String, boolean)

with a boolean.

public void testAdd() {

double result= fValue1 + fValue2;

assertTrue(result == 5.0);

}

The assert methods compare values you expect from a test to the actual results

and throw an exception if the comparison fails.

Once the methods are defined you can run them. Its syntax is given below:

TestCase test= new MathTest("testAdd");

test.run();

Android

711

Monkey

The UI/Application Exerciser Monkey, usually called "monkey", is a command-

line tool that sends pseudo-random streams of keystrokes, touches, and

gestures to a device. You run it with the Android Debug Bridge (adb) tool.

You use it to stress-test your application and report back errors that are

encountered. You can repeat a stream of events by running the tool each time

with the same random number seed.

Monkey features

Monkey has many features, but it can all be summed up to these four

categories.

 Basic configuration options

 Operational constraints

 Event types and frequencies

 Debugging options

Monkey Usage

In order to use monkey, open up a command prompt and just naviagte to the

following directory.

android->sdk->platform-tools

Once inside the directory, attach your device with the PC, and run the following

command:

adb shell monkey -v 100

This command can be broken down into these steps:

 adb - Android Debug Bridge. A tool used to connect and send commands

to your Android phone from a desktop or laptop computer.

 shell - shell is just an interface on the device that translates our

commands to system commands.

 monkey - monkey is the testing tool.

 v - v stands for verbose method.

 100- it is the frequency count or the number of events to be sent for

testing.

Android

712

This is also shown in the figure:

Here, you run the monkey tool on the default android UI application. Now in

order to run it to your application, here is what you have to do.

First run the example code given in the example section in your device. After

running, follow the steps of monkey usage and finally type this command.

adb shell monkey -p com.example.test -v 500

This has also been shown in the figure below. By typing this command, you are

actually generating 500 random events for testing.

Example

The below example demonstrates the use of Testing. It creates a basic

application which can be used for monkey.

To experiment with this example, you need to run this on an actual device and

then follow the monkey steps explained in the beginning.

Android

713

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Test under a package com.example.test. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add Activity code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Create src/MainActivity2.java file to add Activity code.

5 Modify layout XML file res/layout/activity_main_activity2.xml add any

GUI component if required.

6 Modify res/values/string.xml file and add necessary string

components.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.test/MainActivity.java.

package com.example.test;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Android

714

 setContentView(R.layout.activity_main);

 }

 public void activity2(View view){

 Intent intent = new

Intent(this,com.example.test.MainActivity2.class);

 startActivity(intent);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the content of src/com.example.test/MainActivity2.java.

package com.example.test;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

public class MainActivity2 extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main_activity2);

 }

Android

715

 public void activity1(View view){

 Intent intent = new

Intent(this,com.example.test.MainActivity.class);

 startActivity(intent);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main_activity2, menu);

 return true;

 }

}

Here is the content of activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="87dp"

 android:text="@string/test1"

Android

716

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:onClick="activity2"

 android:text="@string/go2" />

</RelativeLayout>

Here is the content of activity_main_activity2.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity2" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="125dp"

 android:text="@string/test2"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

Android

717

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:onClick="activity1"

 android:text="@string/go1" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">test</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="test1">This is activity 1</string>

 <string name="test2">This is activity 2</string>

 <string name="go1">Go to activity 1</string>

 <string name="go2">Go to activity 2</string>

 <string name="title_activity_main_activity2">MainActivity2</string>

</resources>

Here is the content of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.test"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

Android

718

 android:minSdkVersion="8"

 android:targetSdkVersion="14" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.test.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="com.example.test.MainActivity2"

 android:label="@string/title_activity_main_activity2" >

 </activity>

 </application>

</manifest>

Let's try to run your Android Testing application. We assume, you have

connected your actual Android Mobile device with your computer. To run the app

from Eclipse, open one of your project's activity files and click Run icon from

the toolbar. Before starting your application, Eclipse will display following

window to select an option where you want to run your Android application.

Android

719

Select your mobile device as an option and then check your mobile device which

will display application screen. Now just follow the steps mentioned at the top

under the monkey section in order to peform testing on this application.

Android

720

Android allows you to convert your text into voice. Not only you can convert it,

but it also allows you to speak text in variety of different languages.

Android provides TextToSpeech class for this purpose. To use this class, you

need to instantiate an object of this class and also specify the initListener. Its

syntax is given below:

private EditText write;

ttobj=new TextToSpeech(getApplicationContext(), new

TextToSpeech.OnInitListener() {

 @Override

 public void onInit(int status) {

 }

}

);

In this listener, you have to specify the properties for TextToSpeech object, such

as its language, pitch etc. Language can be set by

calling setLanguage() method. Its syntax is given below:

ttobj.setLanguage(Locale.UK);

The method setLanguage takes a Locale object as parameter. The list of some of

the locales available are given below:

Sr.No Locale

1 US

2 CANADA_FRENCH

3 GERMANY

4 ITALY

5 JAPAN

71. TEXT TO SPEECH

Android

721

6 CHINA

Once you have set the language, you can call speak method of the class to

speak the text. Its syntax is given below:

ttobj.speak(toSpeak, TextToSpeech.QUEUE_FLUSH, null);

Apart from the speak method, there are some other methods available in the

TextToSpeech class. They are listed below:

Sr.No Method & description

1 addSpeech(String text, String filename)

This method adds a mapping between a string of text and a sound file.

2 getLanguage()

This method returns a Locale instance describing the language.

3 isSpeaking()

This method checks whether the TextToSpeech engine is busy

speaking.

4 setPitch(float pitch)

This method sets the speech pitch for the TextToSpeech engine.

5 setSpeechRate(float speechRate)

This method sets the speech rate.

6 shutdown()

This method releases the resources used by the TextToSpeech engine.

7 stop()

This method stops the speak.

Example

The below example demonstrates the use of TextToSpeech class. It creates a

basic application that allows you to set write text and speak it.

Android

722

To experiment with this example, you need to run this on an actual device.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as TextToSpeech under a package com.example.texttospeech. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add TextToSpeech code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Modify res/values/string.xml file and add necessary string

components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.texttospeech/MainActivity.java.

package com.example.texttospeech;

import java.util.Locale;

import java.util.Random;

import android.app.Activity;

import android.os.Bundle;

import android.speech.tts.TextToSpeech;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

 TextToSpeech ttobj;

Android

723

 private EditText write;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 write = (EditText)findViewById(R.id.editText1);

 ttobj=new TextToSpeech(getApplicationContext(),

 new TextToSpeech.OnInitListener() {

 @Override

 public void onInit(int status) {

 if(status != TextToSpeech.ERROR){

 ttobj.setLanguage(Locale.UK);

 }

 }

 });

 }

 @Override

 public void onPause(){

 if(ttobj !=null){

 ttobj.stop();

 ttobj.shutdown();

 }

 super.onPause();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void speakText(View view){

 String toSpeak = write.getText().toString();

 Toast.makeText(getApplicationContext(), toSpeak,

Android

724

 Toast.LENGTH_SHORT).show();

 ttobj.speak(toSpeak, TextToSpeech.QUEUE_FLUSH, null);

 }

}

Here is the content of activity_main.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentRight="true"

 android:layout_marginBottom="188dp"

 android:layout_marginRight="67dp"

 android:onClick="speakText"

 android:text="@string/text1" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/button1"

 android:layout_centerHorizontal="true"

Android

725

 android:layout_marginBottom="81dp"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="20dp"

 android:text="@string/write"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">TextToSpeech</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="text1">Text to Speech</string>

 <string name="write">Write Text</string>

</resources>

Android

726

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.texttospeech"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.texttospeech.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

727

Let's try to run your TextToSpeech application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

728

Select your mobile device as an option and then check your mobile device which

will display the following screen:

Android

729

Now just type some text in the field and click on the text to speech button

below. A notification would appear and text will be spoken. It is shown in the

image below:

Android

730

Now type something else and repeat the step again with different locale. You will

again hear sound. This is shown below:

Android

731

If you want to display a live video stream or any content stream such as video

or an OpenGL scene, you can use TextureView provided by android in order to

do that.

In order to use TextureView, all you need to do is get its SurfaceTexture. The

SurfaceTexture can then be used to render content. To do this, you just need to

do instantiate an object of this class and implement SurfaceTextureListener

interface. Its syntax is given below:

private TextureView myTexture;

public class MainActivity extends Activity implements

SurfaceTextureListener{

protected void onCreate(Bundle savedInstanceState) {

 myTexture = new TextureView(this);

 myTexture.setSurfaceTextureListener(this);

 setContentView(myTexture);

 }

}

After that, what you need to do is to override its methods. The methods are

listed as follows:

@Override

public void onSurfaceTextureAvailable(SurfaceTexture arg0, int arg1, int

arg2) {

}

@Override

public boolean onSurfaceTextureDestroyed(SurfaceTexture arg0) {

}

@Override

public void onSurfaceTextureSizeChanged(SurfaceTexture arg0, int arg1,int

arg2) {

}

@Override

public void onSurfaceTextureUpdated(SurfaceTexture arg0) {

}

72. TEXTURE VIEW

Android

732

Any view that is displayed in the texture view can be rotated and its alpha

property can be adjusted by using setAlpha and setRotation methods. Its

syntax is given below:

myTexture.setAlpha(1.0f);

myTexture.setRotation(90.0f);

Apart from these methods, there are other methods available in TextureView

class. They are listed below:

Sr.No Method & description

1 getSurfaceTexture()

This method returns the SurfaceTexture used by this view.

2 getBitmap(int width, int height)

This method returns a Bitmap representation of the content of the

associated surface texture.

3 getTransform(Matrix transform)

This method returns the transform associated with this texture view.

4 isOpaque()

This method indicates whether this View is opaque.

5 lockCanvas()

This method starts editing the pixels in the surface.

6 setOpaque(boolean opaque)

This method indicates whether the content of this TextureView is

opaque.

7 setTransform(Matrix transform)

This method sets the transform to associate with this texture view.

8 unlockCanvasAndPost(Canvas canvas)

This method finishes editing pixels in the surface.

Android

733

Example

The below example demonstrates the use of TextureView class. It creates a

basic application that allows you to view camera inside a texture view and

change its angle, orientation etc.

To experiment with this example, you need to run this on an actual device on

which camera is present.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as TextureView under a package com.example.textureview. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add Activity code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.textureview/MainActivity.java.

package com.example.textureview;

import java.io.IOException;

import android.annotation.SuppressLint;

import android.app.Activity;

import android.graphics.SurfaceTexture;

import android.hardware.Camera;

import android.os.Bundle;

import android.view.Gravity;

import android.view.Menu;

import android.view.TextureView;

import android.view.TextureView.SurfaceTextureListener;

import android.view.View;

Android

734

import android.widget.FrameLayout;

public class MainActivity extends Activity implements

SurfaceTextureListener {

 private TextureView myTexture;

 private Camera mCamera;

 @SuppressLint("NewApi")

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myTexture = new TextureView(this);

 myTexture.setSurfaceTextureListener(this);

 setContentView(myTexture);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 @SuppressLint("NewApi")

 @Override

 public void onSurfaceTextureAvailable(SurfaceTexture arg0, int arg1,

 int arg2) {

 mCamera = Camera.open();

 Camera.Size previewSize = mCamera.getParameters().getPreviewSize();

 myTexture.setLayoutParams(new FrameLayout.LayoutParams(

 previewSize.width, previewSize.height, Gravity.CENTER));

 try {

 mCamera.setPreviewTexture(arg0);

Android

735

 } catch (IOException t) {

 }

 mCamera.startPreview();

 myTexture.setAlpha(1.0f);

 myTexture.setRotation(90.0f);

 }

 @Override

 public boolean onSurfaceTextureDestroyed(SurfaceTexture arg0) {

 mCamera.stopPreview();

 mCamera.release();

 return true;

 }

 @Override

 public void onSurfaceTextureSizeChanged(SurfaceTexture arg0, int arg1,

 int arg2) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onSurfaceTextureUpdated(SurfaceTexture arg0) {

 // TODO Auto-generated method stub

 }

}

Here is the content of activity_main.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

Android

736

 tools:context=".MainActivity" >

 <TextureView

 android:id="@+id/textureView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true" />

</RelativeLayout>

Here is the default content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.textureview"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.CAMERA"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.textureview.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

Android

737

 </activity>

 </application>

</manifest>

Let's try to run your TextureView application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

738

Select your mobile device as an option and then check your mobile device which

will display following screen. This screen has alpha property set to 0.5 and

rotation set to 45.

Android

739

This screen has alpha property set to 1.5 and rotation set to 45.

Android

740

This screen has alpha property set to 1.0 and rotation set to 90.

Android

741

Android allows your application to connect to twitter and share data or any kind

of updates on twitter. This chapter is about integrating twitter into your

application.

There are two ways through which you can integrate twitter and share

something from your application. These ways are listed below:

 Twitter SDK (Twitter4J)

 Intent Share

Integrating Twitter SDK

This is the first way of connecting with Twitter. You have to register your

application and then receive some Application Id, and then you have to

download the twitter SDK and add it to your project. The steps are listed below:

Registering your application

Create a new twitter application at dev.twitter.com/apps/new and fill all the

information. It is shown below:

73. TWITTER INTEGRATION

https://dev.twitter.com/apps/new

Android

742

Now under setttings tab, change the access to read, write and access messages

and save the settings. It is shown below:

Android

743

If everything works fine, you will receive a consumer ID with the secret. Just

copy the application id and save it somewhere. It is shown in the image below:

Downloading SDK and integrating it

Download twitter sdk http://twitter4j.org/en/. Copy the twitter4J jar into your

project libs folder.

Posting tweets on twitter application

Once everything is complete, you can run the twitter 4J samples which can be

found http://twitter4j.org/en/code-examples.html.

In order to use twitter, you need to instantiate an object of twitter class. It can

be done by calling the static method getsingleton(). Its syntax is given below.

// The factory instance is re-useable and thread safe.

Twitter twitter = TwitterFactory.getSingleton();

In order to update the status, you can call updateStatus() method. Its syntax is

given below:

Status status = twitter.updateStatus(latestStatus);

System.out.println("Successfully updated the status to [" +

status.getText() + "].");

Intent share

Intent share is used to share data between applications. In this strategy, we will

not handle the SDK stuff, but let the twitter application handles it. We will simply

call the twitter application and pass the data to share. This way, we can share

something on twitter.

Android

744

Android provides intent library to share data between activities and applications.

To use it as share intent, we have to specify the type of the share intent

to ACTION_SEND. Its syntax is given below:

Intent shareIntent = new Intent();

shareIntent.setAction(Intent.ACTION_SEND);

Next thing you need is to define the type of data to pass, and then pass the

data. Its syntax is given below:

shareIntent.setType("text/plain");

shareIntent.putExtra(Intent.EXTRA_TEXT, "Hello, from tutorialspoint");

startActivity(Intent.createChooser(shareIntent, "Share your thoughts"));

Apart from these methods, there are other methods available that allows intent

handling. They are listed below:

Sr.No Method & description

1 addCategory(String category)

This method adds a new category to the intent.

2 createChooser(Intent target, CharSequence title)

Convenience function for creating a ACTION_CHOOSER Intent.

3 getAction()

This method retrieves the general action to be performed, such as

ACTION_VIEW.

4 getCategories()

This method returns the set of all categories in the intent.nt and the

current scaling event.

5 putExtra(String name, int value)

This method adds extended data to the intent.

6 toString()

This method returns a string containing a concise, human-readable

description of this object.

Android

745

Example

Here is an example demonstrating the use of IntentShare to share data on

twitter. It creates a basic application that allows you to share some text on

twitter.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as IntentShare under a package com.example.intentshare. While

creating this project, make sure you Target SDK and Compile With at

the latest version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.intentshare/MainActivity.java.

package com.example.intentshare;

import java.io.File;

import java.io.FileOutputStream;

import com.example.intentshare.R;

import android.app.Activity;

import android.content.DialogInterface;

import android.content.DialogInterface.OnClickListener;

import android.content.Intent;

Android

746

import android.net.Uri;

import android.os.Bundle;

import android.os.Environment;

import android.view.Menu;

import android.view.View;

import android.widget.ImageView;

import android.widget.Toast;

public class MainActivity extends Activity {

 private ImageView img;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 img = (ImageView) findViewById(R.id.imageView1);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void open(View view){

 Intent shareIntent = new Intent();

 shareIntent.setAction(Intent.ACTION_SEND);

 shareIntent.setType("text/plain");

 shareIntent.putExtra(Intent.EXTRA_TEXT, "Hello, from

tutorialspoint");

 startActivity(Intent.createChooser(shareIntent, "Share your

thoughts"));

Android

747

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginLeft="98dp"

 android:layout_marginTop="139dp"

 android:onClick="open"

 android:src="@drawable/tp" />

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="48dp"

 android:text="@string/tap"

Android

748

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">IntentShare</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="tap">Tap the button to share something</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.intentshare"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.intentshare.MainActivity"

 android:label="@string/app_name" >

Android

749

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run your IntentShare application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Android

750

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Android

751

Now just tap on the image logo and you will see a list of share providers.

Android

752

Now just select twitter from that list and then write any message. It is shown in

the image below:

Now just select the tweet button and then it would be posted on your twitter

page. It is shown below:

Android

753

We will look at the different UI components of android screen in this chapter. We

will also cover the tips to make a better UI design and also explain how to

design a UI.

UI screen components

A typical user interface of an android application consists of action bar and the

application content area.

 Main Action Bar

 View Control

 Content Area

 Split Action Bar

These components have also been shown in the image below:

74. UI DESIGN

Android

754

Understanding Screen Components

The basic unit of android application is the activity. A UI is defined in an xml file.

During compilation, each element in the XML is compiled into equivalent Android

GUI class with attributes represented by methods.

View and ViewGroups

An activity is consisted of views. A view is just a widget that appears on the

screen. It could be button etc. One or more views can be grouped together into

one GroupView. Example of ViewGroup include layouts.

Types of layout

There are many types of layout. Some of which are listed below:

 Linear Layout

 Absolute Layout

 Table Layout

 Frame Layout

 Relative Layout

Linear Layout

Linear layout is further divided into horizontal and vertical layout. It means it

can arrange views in a single column or in a single row. Here is the code of

linear layout (vertical) that includes a text view.

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

android:orientation=”vertical” >

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello” />

</LinearLayout>

Android

755

AbsoluteLayout

The AbsoluteLayout enables you to specify the exact location of its children. It

can be declared like this.

<AbsoluteLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android” >

<Button

android:layout_width=”188dp”

android:layout_height=”wrap_content”

android:text=”Button”

android:layout_x=”126px”

android:layout_y=”361px” />

</AbsoluteLayout>

TableLayout

The TableLayout groups views into rows and columns. It can be declared like

this.

<TableLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:layout_height=”fill_parent”

android:layout_width=”fill_parent” >

<TableRow>

<TextView

android:text=”User Name:”

android:width =”120dp”

/>

<EditText

android:id=”@+id/txtUserName”

android:width=”200dp” />

</TableRow>

</TableLayout>

Android

756

RelativeLayout

The RelativeLayout enables you to specify how child views are positioned relative

to each other. It can be declared like this.

<RelativeLayout

android:id=”@+id/RLayout”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android” >

</RelativeLayout>

FrameLayout

The FrameLayout is a placeholder on screen that you can use to display a single

view. It can be declared like this.

<?xml version=”1.0” encoding=”utf-8”?>

<FrameLayout

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_alignLeft=”@+id/lblComments”

android:layout_below=”@+id/lblComments”

android:layout_centerHorizontal=”true” >

<ImageView

android:src = “@drawable/droid”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

</FrameLayout>

Apart from these attributes, there are other attributes that are common in all

views and ViewGroups. They are listed below:

Sr.No View & description

1 layout_width

Specifies the width of the View or ViewGroup.

2 layout_height

Android

757

Specifies the height of the View or ViewGroup.

3 layout_marginTop

Specifies extra space on the top side of the View or ViewGroup.

4 layout_marginBottom

Specifies extra space on the bottom side of the View or ViewGroup.

5 layout_marginLeft

Specifies extra space on the left side of the View or ViewGroup.

6 layout_marginRight

Specifies extra space on the right side of the View or ViewGroup.

7 layout_gravity

Specifies how child Views are positioned.

8 layout_weight

Specifies how much of the extra space in the layout should be

allocated to the View.

Units of Measurement

When you are specifying the size of an element on an Android UI, you should

remember the following units of measurement.

Sr.No Unit & description

1 dp

Density-independent pixel. 1 dp is equivalent to one pixel on a 160 dpi

screen.

2 sp

Scale-independent pixel. This is similar to dp and is recommended for

specifying font sizes.

3 pt

Point. A point is defined to be 1/72 of an inch, based on the physical

screen size.

Android

758

4 px

Pixel. Corresponds to actual pixels on the screen.

Screen Densities

Sr.No Density & DPI

1 Low density (ldpi)

120 dpi

2 Medium density (mdpi)

160 dpi

3 High density (hdpi)

240 dpi

4 Extra High density (xhdpi)

320 dpi

Optimizing layouts

Here are some of the guidelines for creating efficient layouts.

 Avoid unnecessary nesting

 Avoid using too many Views

 Avoid deep nesting

Android

759

This chapter tells you the different UI Patterns which are available by android to

design apps that behave in a consistent and forseeable way.

UI Patterns components

A good android application should follow following UI patterns:

 Action Bar

 Confirming and Acknowledging

 Settings

 Help

 Selection

Now we will discuss the above mentioned UI Patterns in detail.

Action Bar

The action bar is a dedicated bar at the top of each screen that is generally

persistent througout the app. It provides you several key function which are as

following:

 Makes important actions prominent and accessible

 Supports consistent navigation and view switching within apps

 Reduces clutter by providing an action overflow for rarely used actions

 Provides a dedicated space for giving your app an identity

Action Bar Components

Action Bar has four major components which can be seen in the following image.

75. UI PATTERNS

Android

760

These components name and functionality is disussed below:

Sr.No Action Bar Components

1 App Icon

The app icon establishes your app's identity. It can be replaced with a

different logo or branding if you wish.

2 View control

If your app displays data in different views, this segment of the action

bar allows users to switch views.

3 Action buttons

Shows the most important actions of your app in the actions section.

4 Action overflow

Moves less often used actions to the action overflow.

Confirming and Acknowledging

When a user invokes an action on your app's UI, it is a good practice

to confirm oracknowledge that action through a toast or a dialog box.

There is a difference between Confirming and Acknowledging.

Confirming

When we ask the user to verify that they truly want to proceed with an action

that they just invoked, it is called confirming. As you can see in the following

image:

Android

761

Acknowledging

When we display a toast to let the user know that the action they just invoked

has been completed, is called acknowledging, as you can see in the following

image:

Settings

The place in your app where users can indicate their preferences for how your

app should behave is called as Settings. The use of settings can benefit your

app's users in the following ways:

 Settings help users to pre-determine what will happen in certain

situations.

 Use of settings in your app help users to feel in control.

Placement of Settings

It is preferred by the android developers to always make "settings" option part

of action overflow which is mentioned above. As users did not frequently use this

options so the common practice is to place it below all other items except

"Help". As you can see in the following picture:

Help

Some of your app users may run into some difficulty while using your app and

they will be looking for some answers which they want within the app. So always

make "help" a part of your app.

Android

762

Placement of Help

Like "Settings" the standard design of placing "Help" option is in action

overflow. Always make it very last item in the menu and always label it "Help".

Even if your app screen has no other action overflow items, "Help" should

appear there. As you can see this in the following picture:

Selection

Android 3.0 version changed the long press gesture to the global gesture to

select data. The long press gesture is now used to select data, combining

contextual actions and selection management functions for selected data into a

new element called the contextual action bar (CAB).

Using Contextual Action Bar (CAB)

The selection CAB is a temporary action bar that overlays your app's current

action bar while data is selected. It appears after the user long presses on a

selectable data item. As you can see in the following picture:

From the CAB bar, user can perform following actions:

 Select additional data items by touching them.

 Triggers an action from the CAB that applies to all highlighted data items.

 Dismiss the CAB via the navigation bar's Back button or the CAB's

checkmark button.

Android

763

Android SDK provides the following tools to support automated, functional UI

testing on your application.

 uiautomatorviewer

 uiautomator

uiautomatorviewer

A GUI tool to scan and analyze the UI components of an Android application.

The uiautomatorviewer tool provides a convenient visual interface to inspect the

layout hierarchy and view the properties of the individual UI components that

are displayed on the test device. Using this information, you can later create

uiautomator tests with selector objects that target specific UI components to

test.

To analyze the UI components of the application that you want to test, perform

the following steps after installing the application given in the example.

 Connect your Android device to your development machine.

 Open a terminal window and navigate to /tools/

 Run the tool with this command.

uiautomatorviewer

76. UI TESTING

Android

764

You will see the following window appear. It is the default window of the UI

Automator Viewer.

 Click on the devices icon at the top right corner. It will start taking the UI

XML snapshot of the screen currently opened in the device. It would be

something like this.

Android

765

After that, you will see the snapshot of your device screen in the

uiautomatorviewer window.

On the right side of this window, you will see two partitions. The upper partition

explains the Nodes structure, the way the UI components are arranged and

contained. Clicking on each node gives detail in the lower partition.

As an example, consider the below figure. When you click on the button, you can

see in the upper partition that Button is selected, and in the lower partition, its

details are shown. Since this button is clickable, its property of clickable is set to

true.

Android

766

UI Automator Viewer also helps you to examine your UI in different orientations.

For example, just change your device orientation to landscape, and again

capture the screenshot. It is shown in the figure below:

Android

767

uiautomator

Now you can create your own test cases and run it with uiautomatorviewer to

examine them. In order to create your own test case, you need to perform the

following steps:

 From the Project Explorer, right-click on the new project that you created,

then select Properties > Java Build Path, and do the following:

 Click Add Library > JUnit then select JUnit3 to add JUnit support.

 Click Add External JARs... and navigate to the SDK directory. Under the

platforms directory, select the latest SDK version and add both the

uiautomator.jar and android.jar files.

 Extend your class with UiAutomatorTestCase.

 Right the necessary test cases.

 Once you have coded your test, follow these steps to build and deploy

your test JAR to your target Android test device.

 Create the required build configuration files to build the output JAR. To

generate the build configuration files, open a terminal and run the

following command:

<android-sdk>/tools/android create uitest-project -n <name> -t 1 -p

<path>

 <name> is the name of the project that contains your uiautomator

 test source files, and <path> is the path to the corresponding project

 directory.

 From the command line, set the ANDROID_HOME variable.

set ANDROID_HOME=<path_to_your_sdk>

 Go to the project directory where your build.xml file is located and build

your test JAR.

ant build

 Deploy your generated test JAR file to the test device by using the adb

push command.

adb push /data/local/tmp/

 Run your test by following command:

adb shell uiautomator runtest LaunchSettings.jar -c

com.uia.example.my.LaunchSettings

Android

768

Example

The below example demonstrates the use of UITesting. It creates a basic

application which can be used for uiautomatorviewer.

To experiment with this example, you need to run this on an actual device and

then follow the uiautomatorviewer steps explained in the beginning.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Test under a package com.example.test. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add Activity code.

3 Modify layout XML file res/layout/activity_main.xml add any GUI

component if required.

4 Create src/MainActivity2.java file to add Activity code.

5 Modify layout XML file res/layout/activity_main_activity2.xml add any

GUI component if required.

6 Modify res/values/string.xml file and add necessary string

components.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Here is the content of src/com.example.test/MainActivity.java.

package com.example.test;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

Android

769

import android.view.Menu;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void activity2(View view){

 Intent intent = new

Intent(this,com.example.test.MainActivity2.class);

 startActivity(intent);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Here is the content of src/com.example.test/MainActivity2.java.

package com.example.test;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.Menu;

Android

770

import android.view.View;

public class MainActivity2 extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main_activity2);

 }

 public void activity1(View view){

 Intent intent = new

 Intent(this,com.example.test.MainActivity.class);

 startActivity(intent);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main_activity2, menu);

 return true;

 }

}

Here is the content of activity_main.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

Android

771

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="87dp"

 android:text="@string/test1"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:onClick="activity2"

 android:text="@string/go2" />

</RelativeLayout>

Here is the content of activity_main_activity2.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity2" >

Android

772

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="125dp"

 android:text="@string/test2"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:onClick="activity1"

 android:text="@string/go1" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">test</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="test1">This is activity 1</string>

 <string name="test2">This is activity 2</string>

 <string name="go1">Go to activity 1</string>

 <string name="go2">Go to activity 2</string>

 <string name="title_activity_main_activity2">MainActivity2</string>

</resources>

Android

773

Here is the content of AndroidManifest.xml.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.test"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="14" />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.test.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="com.example.test.MainActivity2"

 android:label="@string/title_activity_main_activity2" >

 </activity>

 </application>

</manifest>

Let's try to run your UI Testing application. We assume, you have connected

your actual Android Mobile device with your computer. To run the app from

Android

774

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Select your mobile device as an option and then check your mobile device which

will display application screen. Now just follow the steps mentioned at the top

under the uiautomatorviewer section in order to perform uitesting on this

application.

Android

775

WebView is a view that display web pages inside your application. You can also

specify HTML string and can show it inside your application using WebView.

WebView turns your application to a web application.

In order to add WebView to your application, you have to

add <WebView> element to your xml layout file. Its syntax is as follows:

<WebView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/webview"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

/>

In order to use it, you have to get a reference of this view in Java file. To get a

reference, create an object of the class WebView. Its syntax is:

WebView browser = (WebView) findViewById(R.id.webview);

In order to load a web url into the WebView, you need to call a

method loadUrl(String url) of the WebView class, specifying the required url.

Its syntax is:

browser.loadUrl("http://www.tutorialspoint.com");

Apart from just loading url, you can have more control over your WebView by

using the methods defined in WebView class. They are listed as follows:

Sr.No Method & Description

1 canGoBack()

This method specifies whether the WebView has a back history item.

2 canGoForward()

This method specifies whether the WebView has a forward history

item.

3 clearHistory()

77. WEBVIEW

Android

776

This method clears the WebView forward and backward history.

4 destroy()

This method destorys the internal state of WebView.

5 findAllAsync(String find)

This method find all instances of string and highlight them.

6 getProgress()

This method gets the progress of the current page.

7 getTitle()

This method returns the title of the current page.

8 getUrl()

This method returns the url of the current page.

If you click on any link inside the webpage of the WebView, that page will not be

loaded inside your WebView. To do that you need to extend your class from

WebViewClient and override its method. Its syntax is:

private class MyBrowser extends WebViewClient {

 @Override

 public boolean shouldOverrideUrlLoading(WebView view, String url) {

 view.loadUrl(url);

 return true;

 }

}

Example

Here is an example demonstrating the use of WebView Layout. It creates a basic

web application that will ask you to specify a url and will load this url website in

the WebView.

To experiment with this example, you need to run this on an actual device on

which internet is running.

Android

777

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as WebView under a package com.example.webview. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add WebView code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Modify the AndroidManifest.xml to add the necessary permissions.

6 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.webview/MainActivity.java.

package com.example.webview;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.view.Window;

import android.webkit.WebSettings;

import android.webkit.WebView;

import android.webkit.WebViewClient;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends Activity {

Android

778

 private EditText field;

 private WebView browser;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 field = (EditText)findViewById(R.id.urlField);

 browser = (WebView)findViewById(R.id.webView1);

 browser.setWebViewClient(new MyBrowser());

 }

 public void open(View view){

 String url = field.getText().toString();

 browser.getSettings().setLoadsImagesAutomatically(true);

 browser.getSettings().setJavaScriptEnabled(true);

 browser.setScrollBarStyle(View.SCROLLBARS_INSIDE_OVERLAY);

 browser.loadUrl(url);

 }

 private class MyBrowser extends WebViewClient {

 @Override

 public boolean shouldOverrideUrlLoading(WebView view, String url) {

 view.loadUrl(url);

 return true;

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

Android

779

 return true;

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/hello_world" />

 <EditText

 android:id="@+id/urlField"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignTop="@+id/textView1"

 android:layout_centerHorizontal="true"

 android:ems="10" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

Android

780

 android:layout_height="wrap_content"

 android:layout_below="@+id/urlField"

 android:layout_centerHorizontal="true"

 android:onClick="open"

 android:text="@string/browse" />

 <WebView

 android:id="@+id/webView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView1"

 android:layout_alignParentBottom="true"

 android:layout_below="@+id/button1" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">WebView</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">URL:</string>

 <string name="browse">Browse</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.webview"

 android:versionCode="1"

 android:versionName="1.0" >

Android

781

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.webview.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Android

782

Let's try to run your WebView application. We assume, you have connected your

actual Android Mobile device with your computer. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Before starting your application, Eclipse will display following window to select

an option where you want to run your Android application.

Android

783

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Android

784

Now just specify a url on the url field and press the browse button that appears,

to launch the website. But before that please make sure that you are connected

to the internet. After pressing the button, the following screen would appear:

Note: By just changing the url in the url field, your WebView will open your

desired website.

Android

785

Android allows applications to view the access of the state of the wireless

connections at a very low level. Application can access almost all the information

of a wi-fi connection.

The information that an application can access includes connected network's link

speed, IP address, negotiation state, other networks information. Applications

can also scan, add, save, terminate and initiate Wi-Fi connections.

Android provides WifiManager API to manage all aspects of WIFI connectivity.

We can instantiate this class by calling getSystemService method. Its syntax is

given below:

WifiManager mainWifiObj;

mainWifiObj = (WifiManager) getSystemService(Context.WIFI_SERVICE);

In order to scan a list of wireless networks, you also need to register your

BroadcastReceiver. It can be registered using registerReceiver method with

argument of your receiver class object. Its syntax is given below:

class WifiScanReceiver extends BroadcastReceiver {

 public void onReceive(Context c, Intent intent) {

 }

}

WifiScanReceiver wifiReceiver = new WifiScanReceiver();

registerReceiver(wifiReceiver, new

IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

The wi-fi scan can be started by calling the startScan method of the

WifiManager class. This method returns a list of ScanResult objects. You can

access any object by calling the get method of list. Its syntax is given below:

List<ScanResult> wifiScanList = mainWifiObj.getScanResults();

String data = wifiScanList.get(0).toString();

78. WI-FI

Android

786

Apart from just Scanning, you can have more control over your WIFI by using

the methods defined in WifiManager class. They are listed as follows:

Sr.No Method & Description

1 addNetwork(WifiConfiguration config)

This method adds a new network description to the set of configured

networks.

2 createWifiLock(String tag)

This method creates a new WifiLock.

3 disconnect()

This method disassociates from the currently active access point.

4 enableNetwork(int netId, boolean disableOthers)

This method allows a previously configured network to be associated

with.

5 getWifiState()

This method gets the Wi-Fi enabled state.

6 isWifiEnabled()

This method returns whether Wi-Fi is enabled or disabled.

7 setWifiEnabled(boolean enabled)

This method enables or disables Wi-Fi.

8 updateNetwork(WifiConfiguration config)

This method updates the network description of an existing configured

network.

Example

Here is an example demonstrating the use of WIFI. It creates a basic application

that scans a list of wirless networks and populate them in a list view.

Android

787

To experiment with this example, you need to run this on an actual device on

which wi-fi is turned on.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as WIFI under a package com.example.wifi. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add WebView code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the AndroidManifest.xml to add the necessary permissions.

5 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.wifi/MainActivity.java.

package com.example.wifi;

import java.util.List;

import android.annotation.SuppressLint;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.net.wifi.ScanResult;

import android.net.wifi.WifiManager;

import android.os.Bundle;

import android.widget.ArrayAdapter;

import android.widget.ListView;

Android

788

import android.widget.Toast;

public class MainActivity extends Activity {

 WifiManager mainWifiObj;

 WifiScanReceiver wifiReceiver;

 ListView list;

 String wifis[];

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 list = (ListView)findViewById(R.id.listView1);

 mainWifiObj = (WifiManager) getSystemService(Context.WIFI_SERVICE);

 wifiReceiver = new WifiScanReceiver();

 mainWifiObj.startScan();

 }

 protected void onPause() {

 unregisterReceiver(wifiReceiver);

 super.onPause();

 }

 protected void onResume() {

 registerReceiver(wifiReceiver, new IntentFilter(

 WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

 super.onResume();

 }

 class WifiScanReceiver extends BroadcastReceiver {

 @SuppressLint("UseValueOf")

 public void onReceive(Context c, Intent intent) {

 List<ScanResult> wifiScanList = mainWifiObj.getScanResults();

 wifis = new String[wifiScanList.size()];

Android

789

 for(int i = 0; i < wifiScanList.size(); i++){

 wifis[i] = ((wifiScanList.get(i)).toString());

 }

 list.setAdapter(new

 ArrayAdapter<String>(getApplicationContext(),

 android.R.layout.simple_list_item_1,wifis));

 }

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <ListView

 android:id="@+id/listView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:drawSelectorOnTop="false"

 android:background="@android:color/background_dark"

 android:listSelector="@android:color/darker_gray" >

Android

790

 </ListView>

</RelativeLayout>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.wifi"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="14"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"

 />

 <uses-permission android:name="android.permission.CHANGE_WIFI_STATE"

 />

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.wifi.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

Android

791

 android:name="com.example.wifi.ListWifiActivity"

 android:label="@string/title_activity_list_wifi" >

 </activity>

 </application>

</manifest>

Let's try to run your WIFI application. We assume, you have connected your

actual Android Mobile device with your computer. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Before starting your application, Eclipse will display following window to select

an option where you want to run your Android application.

Android

792

Select your mobile device as an option and then check your mobile device which

will display your mobile screen filled with wireless networks around you. It is

shown below:

Note the information that has been returned to you. It contains much

information about each of the wireless network detected.

Android

793

A widget is a small gadget or control of your android application placed on the

home screen. Widgets can be very handy as they allow you to put your favourite

applications on your home screen in order to quickly access them. You have

probably seen some common widgets, such as music widget, weather widget,

clock widget etc.

Widgets could be of many types such as information widgets, collection widgets,

control widgets and hybrid widgets. Android provides us a complete framework

to develop our own widgets.

Widget - XML file

In order to create an application widget, first thing you need is

AppWidgetProviderInfo object, which you will define in a separate widget XML

file. To do that, right click on your project and create a new folder called xml.

Now right click on the newly created folder and create a new XML file. The

resource type of the XML file should be set to AppWidgetProvider. In the xml

file, define some properties which are as follows:

<appwidget-provider

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:minWidth="146dp"

 android:updatePeriodMillis="0"

 android:minHeight="146dp"

 android:initialLayout="@layout/activity_main">

</appwidget-provider>

Widget - Layout file

Now you have to define the layout of your widget in your default XML file. You

can drag components to generate auto xml.

Widget - Java file

After defining layout, now create a new JAVA file or use existing one, and extend

it with AppWidgetProvider class and override its update method as follows.

In the update method, you have to define the object of two classes which are

PendingIntent and RemoteViews. Its syntax is:

79. WIDGETS

Android

794

PendingIntent pending = PendingIntent.getActivity(context, 0, intent, 0);

RemoteViews views = new RemoteViews(context.getPackageName(),

R.layout.activity_main);

In the end you have to call an update method updateAppWidget() of the

AppWidgetManager class. Its syntax is:

appWidgetManager.updateAppWidget(currentWidgetId,views);

A part from the updateAppWidget method, there are other methods defined in

this class to manipulate widgets. They are as follows:

Sr.No Method & Description

1 onDeleted(Context context, int[] appWidgetIds)

This is called when an instance of AppWidgetProvider is deleted.

2 onDisabled(Context context)

This is called when the last instance of AppWidgetProvider is deleted

3 onEnabled(Context context)

This is called when an instance of AppWidgetProvider is created.

4 onReceive(Context context, Intent intent)

It is used to dispatch calls to the various methods of the class

Widget - Manifest file

You also have to declare the AppWidgetProvider class in your manifest file as

follows:

<receiver android:name="ExampleAppWidgetProvider" >

 <intent-filter>

 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />

 </intent-filter>

 <meta-data android:name="android.appwidget.provider"

 android:resource="@xml/example_appwidget_info" />

</receiver>

Android

795

Example

Here is an example demonstrating the use of application Widget. It creates a

basic widget applications that will open this current website in the browser.

To experiment with this example, you need to run this on an actual device on

which internet is running.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as Widget under a package com.example.widget. While creating this

project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add widget code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Create a new folder and xml file under res/xml/mywidget.xml to add

respective XML components.

5 Modify the res/values/string.xml to add necessary string components.

6 Modify the AndroidManifest.xml to add the necessary permissions.

7 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.widget/MainActivity.java.

package com.example.widget;

import android.net.Uri;

import android.os.Bundle;

import android.app.Activity;

import android.app.PendingIntent;

import android.appwidget.AppWidgetManager;

Android

796

import android.appwidget.AppWidgetProvider;

import android.content.Context;

import android.content.Intent;

import android.util.Log;

import android.view.Menu;

import android.view.View;

import android.webkit.WebView.FindListener;

import android.widget.Button;

import android.widget.RemoteViews;

import android.widget.Toast;

public class MainActivity extends AppWidgetProvider{

 @Override

 public void onUpdate(Context context, AppWidgetManager

 appWidgetManager,

 int[] appWidgetIds) {

 for(int i=0; i<appWidgetIds.length; i++){

 int currentWidgetId = appWidgetIds[i];

 String url = "http://www.tutorialspoint.com";

 Intent intent = new Intent(Intent.ACTION_VIEW);

 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 intent.setData(Uri.parse(url));

 PendingIntent pending = PendingIntent.getActivity(context, 0,

 intent, 0);

 RemoteViews views = new RemoteViews(context.getPackageName(),

 R.layout.activity_main);

 views.setOnClickPendingIntent(R.id.button1, pending);

 appWidgetManager.updateAppWidget(currentWidgetId,views);

 Toast.makeText(context, "widget added", Toast.LENGTH_SHORT).show();

 }

 }

}

Android

797

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="top"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:text="@string/website"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView1"

 android:layout_below="@+id/textView1"

 android:layout_marginLeft="18dp"

 android:text="@string/app_name" />

</RelativeLayout>

Android

798

Following is the content of the res/xml/mywidget.xml.

<?xml version="1.0" encoding="utf-8"?>

<appwidget-provider

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:minWidth="146dp"

 android:updatePeriodMillis="0"

 android:minHeight="146dp"

 android:initialLayout="@layout/activity_main">

</appwidget-provider>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Widget</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="website">TutorialsPoint.com</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.widget"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="10"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET"/>

Android

799

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <receiver android:name="MainActivity" >

 <intent-filter>

 <action

 android:name="android.appwidget.action.APPWIDGET_UPDATE"

 />

 </intent-filter>

 <meta-data android:name="android.appwidget.provider"

 android:resource="@xml/mywidget" />

 </receiver>

 </application>

</manifest>

Let's try to run your Widget application. We assume, you have connected your

actual Android Mobile device with your computer. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Before starting your application, Eclipse will display following window to select

an option where you want to run your Android application.

Android

800

Select your mobile device as an option and then check your mobile device which

will display your default screen:

Go to your widget section and add your created widget to the dsktop or

homescreen. It would look something like this:

Android

801

Now just tap on the widget button that appears, to launch the browser. But

before that please make sure that you are connected to the internet. After

pressing the button, the following screen would appear:

Android

802

Note. By just changing the url in the java file, your widget will open your desired

website in the browser.

Android

803

XML stands for Extensible Markup Language. XML is a very popular format and

commonly used for sharing data on the internet. This chapter explains how to

parse the XML file and extract necessary information from it.

Android provides three types of XML parsers which are DOM, SAX and

XMLPullParser. Among all of them android recommend XMLPullParser because

it is efficient and easy to use. So we are going to use XMLPullParser for parsing

XML.

The first step is to identify the fields in the XML data in which you are interested

in. For example, in the XML given below we are interested in getting

temperature only.

<?xml version="1.0"?>

<current>

 <city id="2643743" name="London">

 <coord lon="-0.12574" lat="51.50853"/>

 <country>GB</country>

 <sun rise="2013-10-08T06:13:56" set="2013-10-08T17:21:45"/>

 </city>

 <temperature value="289.54" min="289.15" max="290.15" unit="kelvin"/>

 <humidity value="77" unit="%"/>

 <pressure value="1025" unit="hPa"/>

</country>

XML - Elements

An xml file consist of many components. Here is the table defining the

components of an XML file and their description.

Sr.No Component & description

1 Prolog

An XML file starts with a prolog. The first line that contains the

information about a file is prolog

2 Events

80. XML PARSER

Android

804

An XML file has many events. Event could be like this. Document

starts, Document ends, Tag starts, Tag ends and Text etc.

3 Text

Apart from tags and events, and xml file also contains simple text.

Such as GB is a text in the country tag.

4 Attributes

Attributes are the additional properties of a tag such as value etc.

XML - Parsing

In the next step, we will create XMLPullParser object, but in order to create that

we will first create XmlPullParserFactory object and then call its newPullParser()

method to create XMLPullParser. Its syntax is given below:

private XmlPullParserFactory xmlFactoryObject =
XmlPullParserFactory.newInstance();

private XmlPullParser myparser = xmlFactoryObject.newPullParser();

The next step involves specifying the file for XmlPullParser that contains XML. It

could be a file or could be a Stream. In our case it is a stream. Its syntax is

given below:

myparser.setInput(stream, null);

The last step is to parse the XML. An XML file consist of events, Name, Text,

AttributesValue etc. So XMLPullParser has a seperate function for parsing each of

the component of XML file. Its syntax is given below:

int event = myParser.getEventType();

while (event != XmlPullParser.END_DOCUMENT)

{

 String name=myParser.getName();

 switch (event){

 case XmlPullParser.START_TAG:

 break;

 case XmlPullParser.END_TAG:

 if(name.equals("temperature")){

 temperature = myParser.getAttributeValue(null,"value");

Android

805

 }

 break;

 }

 event = myParser.next();

}

The method getEventType returns the type of event that happens. e.g:

Document start, tag start etc. The method getName returns the name of the

tag and since we are only interested in temperature, so we just check in

conditional statement that if we get a temperature tag, we call the

method getAttributeValue to return us the value of temperature tag.

Apart from these methods, there are other methods provided by this class for

better parsing XML files. These methods are listed below:

Sr.No Method & description

1 getAttributeCount()

This method just returns the number of attributes of the current start

tag.

2 getAttributeName(int index)

This method returns the name of the attribute specified by the index

value.

3 getColumnNumber()

This method returns the current column number, starting from 0.

4 getDepth()

This method returns the current depth of the element.

5 getLineNumber()

Returns the current line number, starting from 1.

6 getNamespace()

This method returns the namespace URI of the current element.

7 getPrefix()

Android

806

This method returns the prefix of the current element.

8 getName()

This method returns the name of the tag.

9 getText()

This method returns the text for that particular element.

10 isWhitespace()

This method checks whether the current TEXT event contains only

whitespace characters.

Example

Here is an example demonstrating the use of XMLPullParser class. It creates a

basic Weather application that allows you to parse XML from google weather api

and shows the result.

To experiment with this example, you can run this on an actual device or in an

emulator.

Steps Description

1 You will use Eclipse IDE to create an Android application and name it

as XMLParser under a package com.example.xmlparser. While creating

this project, make sure you Target SDK and Compile With at the latest

version of Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add necessary code.

3 Modify the res/layout/activity_main to add respective XML

components.

4 Modify the res/values/string.xml to add necessary string components.

5 Create a new java file under src/HandleXML.java to fetch and parse

XML data.

6 Modify AndroidManifest.xml to add necessary internet permission.

Android

807

7 Run the application and choose a running android device and install

the application on it and verify the results.

Following is the content of the modified main activity file

src/com.example.xmlparser/MainActivity.java.

package com.example.xmlparser;

import java.io.IOException;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.ParseException;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.util.EntityUtils;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

public class MainActivity extends Activity {

 private String url1 =

 "http://api.openweathermap.org/data/2.5/weather?q=";

 private String url2 = "&mode=xml";

 private EditText location,country,temperature,humidity,pressure;

 private HandleXML obj;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Android

808

 setContentView(R.layout.activity_main);

 location = (EditText)findViewById(R.id.editText1);

 country = (EditText)findViewById(R.id.editText2);

 temperature = (EditText)findViewById(R.id.editText3);

 humidity = (EditText)findViewById(R.id.editText4);

 pressure = (EditText)findViewById(R.id.editText5);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar

 // if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 public void open(View view){

 String url = location.getText().toString();

 String finalUrl = url1 + url + url2;

 country.setText(finalUrl);

 obj = new HandleXML(finalUrl);

 obj.fetchXML();

 while(obj.parsingComplete);

 country.setText(obj.getCountry());

 temperature.setText(obj.getTemperature());

 humidity.setText(obj.getHumidity());

 pressure.setText(obj.getPressure());

 }

}

Android

809

Following is the content of src/com.example.xmlparser/HandleXML.java.

package com.example.xmlparser;

import java.io.IOException;

import java.io.InputStream;

import java.net.HttpURLConnection;

import java.net.URL;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.util.EntityUtils;

import org.xmlpull.v1.XmlPullParser;

import org.xmlpull.v1.XmlPullParserException;

import org.xmlpull.v1.XmlPullParserFactory;

import android.util.Log;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class HandleXML {

 private String country = "county";

 private String temperature = "temperature";

 private String humidity = "humidity";

 private String pressure = "pressure";

 private String urlString = null;

 private XmlPullParserFactory xmlFactoryObject;

 public volatile boolean parsingComplete = true;

 public HandleXML(String url){

Android

810

 this.urlString = url;

 }

 public String getCountry(){

 return country;

 }

 public String getTemperature(){

 return temperature;

 }

 public String getHumidity(){

 return humidity;

 }

 public String getPressure(){

 return pressure;

 }

 public void parseXMLAndStoreIt(XmlPullParser myParser) {

 int event;

 String text=null;

 try {

 event = myParser.getEventType();

 while (event != XmlPullParser.END_DOCUMENT) {

 String name=myParser.getName();

 switch (event){

 case XmlPullParser.START_TAG:

 break;

 case XmlPullParser.TEXT:

 text = myParser.getText();

 break;

 case XmlPullParser.END_TAG:

 if(name.equals("country")){

 country = text;

 }

 else if(name.equals("humidity")){

Android

811

 humidity = myParser.getAttributeValue(null,"value");

 }

 else if(name.equals("pressure")){

 pressure = myParser.getAttributeValue(null,"value");

 }

 else if(name.equals("temperature")){

 temperature =

 myParser.getAttributeValue(null,"value");

 }

 else{

 }

 break;

 }

 event = myParser.next();

 }

 parsingComplete = false;

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void fetchXML(){

 Thread thread = new Thread(new Runnable(){

 @Override

 public void run() {

 try {

 URL url = new URL(urlString);

 HttpURLConnection conn = (HttpURLConnection)

 url.openConnection();

 conn.setReadTimeout(10000 /* milliseconds */);

 conn.setConnectTimeout(15000 /* milliseconds */);

 conn.setRequestMethod("GET");

 conn.setDoInput(true);

Android

812

 conn.connect();

 InputStream stream = conn.getInputStream();

 xmlFactoryObject = XmlPullParserFactory.newInstance();

 XmlPullParser myparser = xmlFactoryObject.newPullParser();

 myparser.setFeature(XmlPullParser.FEATURE_PROCESS_NAMESPACES

 , false);

 myparser.setInput(stream, null);

 parseXMLAndStoreIt(myparser);

 stream.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 thread.start();

 }

}

Following is the modified content of the xml res/layout/activity_main.xml.

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

Android

813

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="15dp"

 android:text="@string/location"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/textView1"

 android:layout_alignParentRight="true"

 android:ems="10" />

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView1"

 android:layout_below="@+id/textView1"

 android:layout_marginTop="68dp"

 android:text="@string/country"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/textView2"

Android

814

 android:layout_marginTop="19dp"

 android:text="@string/temperature"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView3"

 android:layout_below="@+id/textView3"

 android:layout_marginTop="32dp"

 android:text="@string/humidity"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView

 android:id="@+id/textView5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView4"

 android:layout_below="@+id/textView4"

 android:layout_marginTop="21dp"

 android:text="@string/pressure"

 android:textAppearance="?android:attr/textAppearanceSmall" />

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/textView3"

 android:layout_toRightOf="@+id/textView3"

 android:ems="10" >

 <requestFocus />

 </EditText>

Android

815

 <EditText

 android:id="@+id/editText3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView3"

 android:layout_alignBottom="@+id/textView3"

 android:layout_alignLeft="@+id/editText2"

 android:ems="10" />

 <EditText

 android:id="@+id/editText4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/textView5"

 android:layout_alignLeft="@+id/editText1"

 android:ems="10" />

 <EditText

 android:id="@+id/editText5"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView5"

 android:layout_alignBottom="@+id/textView5"

 android:layout_alignRight="@+id/editText4"

 android:ems="10" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/editText2"

 android:layout_below="@+id/editText1"

 android:onClick="open"

Android

816

 android:text="@string/weather" />

</RelativeLayout>

Following is the content of the res/values/string.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">XMLParser</string>

 <string name="action_settings">Settings</string>

 <string name="hello_world">Hello world!</string>

 <string name="location">Location</string>

 <string name="country">Country:</string>

 <string name="temperature">Temperature:</string>

 <string name="humidity">Humidity:</string>

 <string name="pressure">Pressure:</string>

 <string name="weather">Weather</string>

</resources>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.xmlparser"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

Android

817

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name="com.example.xmlparser.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Let's try to run our XMLParser application we just modified. We assume, you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Android

818

Now you need to enter any location in the location field. For example, we have

entered London. Press the weather button, when you enter the location. The

following screen would appear in you AVD:

Android

819

Now when you press the weather button, the application will contact the Google

Weather API and will request for your necessary XML location file and will parse

it. In case of London following file would be returned:

Android

820

Note: This temperature is in kelvin, so if you want to convert it into more

understandable format, you have to convert it into Celsius.

